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Abstract

The report contains an overview of what I have learnt in Quantum Field
Theory during Summer of Science 2021, IIT Bombay.

Introduction

Quantum Field Theory emerged out of an attempt to club Quantum Mechanics and
Einstein’s Theory of Relativity. It now appears to be the most fundamental theory in
physics, being a positive candidate for “The Theory of Everything”, a consequence
of which is String Theory, Quantum Gravity, Elementary Particle Physics, Quantum
Chromodynamics, The Standard Model and many more.
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1 Theory of Fields

1.1 Scalar Field

Functions of space and time that are Lorentz invariant. eg. Temperature of a fluid.

φ(x) −→ φ(x)

1.2 Vector Field

Transform like 4-vectors under Lorentz transformations. It is common to denote
3-vectors by ~x and 4-vectors by x.

1.3 Tensor Field

Transform like tensors of some rank under Lorentz transformations. The quantity
vµvµ is constant in all frames. eg. d’Alembertian is the simplest Lorentz invariant
operator; parity and time-reversal operators are Lorentz invariant operators.

1.4 Free massless fields

They always satisfy the equation
φ = 0.

General solution is

φ(x, t) =

∫
1

(2π)3
(ap(t)e

ι~p·~x + a+p (t)e−ι~p·~x) d3p

with
(∂2t + ~p · ~p)ap(t) = 0.

One particular solution is
φ(x) = ap(t)e

ι~p·~x.

a+p is called the creation operator and ap is called the annihilation operator as

a+p |0〉 = |~p〉.

1.5 Time dependance of creation and annihilation operators

Working in the Heisenberg picture, we have

ap(t) = e−ιωptap

a+p (t) = eιωpta+p .

2 The Klein-Gordon Equation

It is the following differential equation

( +m2)φ = 0.

We get this by minimizing the action

S =

∫
[
1

2
∂µφ∂µφ− ν(φ)] d4x

where ν(φ) is the potential energy/interaction energy density term. The integrand
is the simplest possible Lagrangian as it has no self-interacting terms.
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3 Noether’s Theorem

If a Lagrangian has a continuous symmetry then there exists a current associated
with the symmetry that is conserved when the equations of motion are satisfied.

3.1 An Example

Lagrangian
L = |∂µφ|2 −m2|φ|2

L is invariant under φ −→ e−ιαφ for any α ∈ <. We can write

L = ∂µφ∂µφ
∗ −m2φφ∗.

We get two equations of motion (or rather field solutions) that are

( +m2)φ = 0

( +m2)φ∗ = 0.

The equations of motion reduce to ∂µJµ = 0 where

Jµ =
∑
n

∂L

∂(∂µφn)

∂φn
∂α

that is the Noether current. We can derive Coulomb’s Potential Law using these
simple ideas.

4 The S-matrix

A framework to describe interactions.

4.1 Time-Ordered Product

Operator with later time value must be put to left

=[A(x), B(x′)] ≡

{
A(x)B(x′) t > t′

B(x′)A(x) t′ > t

4.2 Evolution Operator

We have
H = H0 +HI

Define evolution operator U0(t) as

|Ψ0(t)〉 = U0(t)Ψ0(−∞) ≡ U0(t)|i〉.

Define evolution operator U(t) as

|Ψ(t)〉 = U0(t)U(t)U+
0 (t)Ψ0(t).

Here Ψ0 is the solution to the free Hamiltonian and ψ is the solution to actual
Hamiltonian. Substituting this in time-dependant Schrödinger equation we get

U0(t) = e−ιH0t
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assuming H0 is independent of time (as is seen in the Heisenberg picture). Similarly
for the full Hamiltonian, putting boundary conditions such as HI −→ 0 as t −→ −∞
we get

U(t) = 1 +
∞∑
n=1

(−ι)n

n!

∫ t

−∞
dt1

∫ t

−∞
dt2.....

∫ t

−∞
dtn=[HI(t1)HI(t2).....HI(tn)]

compactly writing it as

U(t) = =[e−ι
∫ t
−∞HI(t

′) dt′ ]

where = is the time ordering product. In most cases this series converges. The S-
matrix is unitary for any t, i.e., SS+ = S+S = 1. Transition amplitude for |i〉 −→ |f〉
at late times t −→∞ is 〈f |S|i〉.

4.3 An Example - Meson Decay

|i〉 =
√

2Epa
+
p |0〉 |f〉 =

√
4Eq1Eq2b

+
q1
c+q2|0〉 Initial state consists of a single meson of

momentum p. Final state consists of nucleon-antinucleon pair of momentum q1 and
q2. Amplitude frequency for decay of meson to nucleon-antinucleon pair is

〈f |S|i〉 = −ιg〈f |
∫

Ψ+(x)Ψ(x)Φ(x)|i〉.

We can use that Φ ' a+ a+, Ψ ' b+ c+ and Ψ+ ' b+ + c. So we get

〈f |S|i〉 = −ιg〈0|
∫ ∫ √

Eq1Eq2√
Ek1Ek2

aq2bq1a
+
k1
b+k2e

ι(k1+k2−p)·x d
4xd3k1d

3k2
(2π)6

= −ιg(2π)4δ4(q1 + q2 − p).

5 Tools for Feynman diagrams

5.1 Normal Ordering

Normal ordered string of operators Φ1(x1)Φ2(x2).....Φn(xn) is written as

: Φ1(x1)Φ2(x2).....Φn(xn) : .

It is defined to be the usual product with the annihilation operators on the right.

5.2 Propagators

“If we prepare a particle at spacetime point y, what is the amplitude of
finding it at point x?”

〈0|Φ(x)Φ(y)|0〉 =

∫ ∫
d3pd3p′

(2π)6
1√

4EpEp′
〈0|apa+p |0〉e−ιp·x+ιp

′·y

=

∫
d3p

(2π)3
1

2Ep
e−ιp·(x−y) ≡ D(x− y).

The function D(x− y) is called propagator.
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5.3 The Feynman Propagator

∆F (x− y) ≡ 〈0|=Φ(x)Φ(y)|0〉 =

{
D(x− y) x0 > y0

D(y − x) x0 < y0

where = stands for time-ordering. ∆F can also be written as

∆F (x− y) =

∫
d4p

(2π)4
i

p2 −m2
e−ιp·(x−y)

where p2 = (p0)2 − ~p2. This can be simplified as
for x0 > y0 we have

D(x− y) =

∫
d3p

(2π)3
1

2Ep
e−ιp·(x−y),

and for y0 > x0 we have

D(y − x) =

∫
d3p

(2π)3
1

2Ep
e−ιp·(y−x)

where Ep = p0.

5.4 Contraction

Contraction of Φ(x)Φ(y) is defined as︷ ︸︸ ︷
Φ(x)Φ(y) = ∆F (x− y)

i.e. replacing the operators with the Feynman propagator. Another definition of
contraction, that is more intuitive, is

〈0|=[Φ(x)Φ(y)]|0〉 ≡ Φ(x)Φ(y)︸ ︷︷ ︸
We also define ︷ ︸︸ ︷

Ψ(x)Ψ+(y) = ∆F (x− y)︷ ︸︸ ︷
Ψ(x)Ψ(y) =

︷ ︸︸ ︷
Ψ(x)+Ψ+(y) = 0.

5.5 Wick’s Theorem

For any collection of fields Φ1 ≡ Φ(x1), Φ2 ≡ Φ(x2), etc we have

=(Φ1Φ2.....Φn) =: Φ1Φ2.....Φn : + : all possible contractions : .

For example, for n = 2

=Φ(x)Φ(y) = : Φ(x)Φ(y) : +∆F (x− y).

For example, for n = 4

=Φ1Φ2Φ3Φ4 = : Φ1Φ2Φ3Φ4 : +
︷ ︸︸ ︷
Φ1Φ2 : Φ3Φ4 : +

︷ ︸︸ ︷
Φ1Φ3 : Φ2Φ4 :

+ (4 similar terms) +
︷ ︸︸ ︷
Φ1Φ2

︷ ︸︸ ︷
Φ3Φ4 +

︷ ︸︸ ︷
Φ1Φ3

︷ ︸︸ ︷
Φ2Φ4 +

︷ ︸︸ ︷
Φ1Φ4

︷ ︸︸ ︷
Φ2Φ3 .
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6 Feynman diagrams

They give the expansion for 〈f |S − 1|i〉.

• Draw an external line for each particle in initial state |i〉 and each particle in
final state |f〉. Choose dotted lines for mesons, solid lines for nucleons. Assign
a directed momentum p to each line. Add an arrow to solid lines to denote
its charge - incoming arrow in the initial state for Ψ̄. For final state, outgoing
arrow indicates Ψ and incoming arrow indicates Ψ̄.

• Join the external lines together with trivalent vertices.

• Add a momentum k to each interval line.

• To each vertex write down a factor of −ιg(2π)4δ4(
∑
k) where

∑
k is the sum

of all momenta flowing ”into” the vertex.

• For each dotted line corresponding to a Φ particle with momentum k, write
down a factor of ∫

d4k

(2π)4
ι

k2 −m2 + ιε

Include the same factor for solid internal lines with m replaced by nucleon
mass M .

• Draw all possible diagrams with appropriate external legs and impose 4-
momentum conservation at each vertex.

• Write down a factor of −ιg at each vertex.

• For each line write down the propagator.

• Integrate over momentum k flowing through each loop
∫

d4k
(2π)4

.

〈f |S− 1|i〉 = ιAfi(2π)4δ4(pf − pi) where Afi is called the scattering amplitude. Now
we will look at some real applications of Feynman diagrams (upto lowest order in
S-matrix element) and how they simplify our task.

6.1 Nucleon Scattering

ΨΨ −→ ΨΨ

Afi = (−ιg)2[
1

(p1 − p′1)2 −m2
+

1

(p1 − p′2)2 −m2
]

Here k = p1−p′1 = p′2−p2 is the momentum of the ”virtual” meson that is exchanged
by the both nucleons. (”mes” in Greek means ’middle’)

6.2 Nucleon to Meson Scattering

ΨΨ̄ −→ ΦΦ

Afi = (−ιg)2[
1

(p1 − p′1)2 −M2
+

1

(p1 − p′2)2 −M2
]

Here the virtual particle is a nucleon.
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6.3 Nucleon-Antinucleon Scattering

ΨΨ̄ −→ ΨΨ̄

Afi = (−ιg)2[
1

(p1 − p′1)2 −m2
+

1

(p1 + p′2)
2 −m2 + ιε

]

In the COM frame, denominator of second term becomes 4(M2+p21)−m2+0. So we
get resonance at 4(M2 +p21) = m2 which is an opportunity to discover new particles.

6.4 Meson Scattering

ΦΦ −→ ΦΦ
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Afi = (−ιg)4
∫

d4k

(2π)4
1

(k2 −M2 + ιε)((k + p′1)
2 −M2 + ιε)

1

(k + p′1 − p1)2 −M2 + ιε)((k − p′2)2 −M2 + ιε)

For large k the integral goes as
∫

d4k
k8

which is convergent. But k need not always
be large.
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Solved problems

1 Classical formulation of three coupled fields

Consider the interaction term in the following Lagrangian density, for 3
scalar fields φ1, φ2, φ3 associated to spinless particles of masses m1,m2,m3,

LI(x) = −κφ1(x)φ2(x)φ3(x).

Note that magnitude of κ gives the strength of interaction.
(a) Show that this Lagrangian part is Hermitian for real κ.
(b) Find the Hamiltonian density HI.

Sol. (a)
L†I = (−κφ1φ2φ3)

† = −φ†3φ
†
2φ
†
1κ
† = −φ3φ2φ1κ

= −κφ1φ2φ3

(b)

HI =
∑

piq̇i − L =
∑ ∂L

∂φ̇i
φ̇i − L

= κφ1(x)φ2(x)φ3(x) = HI(x)

2 Wick’s Theorem

The above Lagrangian results in the second order term of time series to
have the product =[: φ1φ2φ3|x1φ1φ2φ3|x2 :]. Apply Wick’s Theorem to ex-
press this in terms of product of 3 fields.

Sol.
=[: φ1φ2φ3|x1φ1φ2φ3|x2 :] =: φ1φ2φ3|x1φ1φ2φ3|x2 : +︷ ︸︸ ︷

φ1(x1)φ1(x2) : φ2(x1)φ2(x2)φ3(x1)φ3(x2) : +
︷ ︸︸ ︷
φ2(x1)φ2(x2) : φ1(x1)φ1(x2)φ3(x1)φ3(x2) :

+
︷ ︸︸ ︷
φ3(x1)φ3(x2) : φ1(x1)φ1(x2)φ2(x1)φ2(x2) :

+
︷ ︸︸ ︷
φ1(x1)φ1(x2)

︷ ︸︸ ︷
φ2(x1)φ2(x2) : φ3(x1)φ3(x2) : +

︷ ︸︸ ︷
φ2(x1)φ2(x2)

︷ ︸︸ ︷
φ1(x1)φ1(x2) : φ3(x1)φ3(x2) :

+
︷ ︸︸ ︷
φ3(x1)φ3(x2)

︷ ︸︸ ︷
φ1(x1)φ1(x2) : φ2(x1)φ2(x2) :

+
︷ ︸︸ ︷
φ1(x1)φ1(x2)

︷ ︸︸ ︷
φ2(x1)φ2(x2)

︷ ︸︸ ︷
φ3(x1)φ3(x2)

3 Propagators

Evaluate the function

〈0|φ(x)φ(y)|0〉 = D(x− y) =

∫
d3p

(2π)3
1

2Ep
e−ιp·(x−y)

for (x−y) spacelike and (x−y)2 = −r2 explicitly in terms of Bessel functions.

Sol. Since (x− y) is spacelike

(x− y)µ = (0, ~x− ~y)
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pµ = (Ep, ~p)

with Ep =
√
m2 + ~p2. Hence

D(x− y) =

∫
d3p

(2π)3
1

2
√
m2 + ~p2

eι~p·~x−~y)

=

∫ 2π

ψ=0

∫ 1

cos θ=−1

∫ ∞
p=0

1

(2π)3
1

2
√
m2 + ~p2

eιpr cos θdpd(cos θ)dψ

= − ι

2(2π)2r

∫ ∞
−∞

peιpr√
m2 + p2

dp =
m

4π2r
K1(mr)

4 Creation and Annihilation Operators

The action for a complex scalar field satisfying the Klein-Gordon Equa-
tion is given by

S =

∫
d4x(∂µφ

∗∂µφ−m2φ∗φ).

The corresponding Hamiltonian is given by

H =

∫
d3x(π∗π +∇φ∗ · ∇φ+m2φ∗φ).

Diagonalize H by introducing creation and annihilation operators. Show
that the theory contains 2 particles of mass m.

Sol. Since φ is complex, it’s real and imaginary parts are both solutions to the
Klein-Gordon equation. So we can treat φ and φ∗ independently instead of using
the real and imaginary parts of φ. So we can write

φ(~x) =

∫
d3p

(2π)3
1

2Ep
(ape

−ι~p·~x + b†pe
ι~p·~x)

φ∗(~x) =

∫
d3p

(2π)3
1

2Ep
(bpe

−ι~p·~x + a†pe
ι~p·~x).

Conjugate momentum for φ and φ∗ are

π =
∂L

∂φ̇
= φ̇∗

and

π̃ =
∂L

∂φ̇∗
= φ̇ = π∗

respectively. Substituting the partial time derivatives of φ and φ∗ in the Hamiltonian
we get

H =

∫
d3xEp(a

†
pap + b†pbp).
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