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Abstract

The Dirac equation on a non-torsional space-time (V4) has been studied extensively in the NP
formalism. In particular, a comprehensive treatment is given by S. Chandrasekhar in [6], which we
take as our primary source. Building upon this work, we aim to (working always in the NP formalism)
explicitly write the contorsion spin coefficients in terms of the Dirac spinor components, before general-
ising the Dirac equations by carrying them into a torsional space-time (U4) – where it is known in this
form as the Hehl-Datta equation – as permitted by the Einstein-Cartan-Sciama-Kibble (ECSK) frame-
work which has nonvanishing torsion. Finally, we write down the full Einstein-Cartan-Dirac (ECD)
equations in the NP formalism, and attempt a solution (on Minkowski background) in various specific
cases.
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Notation and conventions

The following conventions are in use for the remainder of this paper:

� The Lorentz Signature used is (+ - - -) throughout.

� V4 is a non-torsional space-time, while a space-time endowed with torsion is specified by U4.

� Greek indices, e.g. α, ζ, δ refer to world components, which transform according to general coordinate
transformations and are raised or lowered using the metric gµν .

� Latin indices within parenthesis e.g. (a) or (i) are tetrad indices, which transform according to local
Lorentz transformations in the flat tangent space, and are raised or lowered using η(i)(k).

� Latin indices (without parenthesis) e.g. i, j, b, c indicate objects in Minkowski space, which transform
according to global Lorentz transformations).

� In general 0, 1, 2, 3 refer to world indices while (0), (1), (2), (3) refer to tetrad indices.

� The total covariant derivative is denoted by ∇, while {} denotes the Christoffel connection. Corre-
spondingly, ∇{} represents a covariant derivative with respect to the Christofell connections.

� Commas (, ) indicate partial derivatives while semicolons (; ) indicate the Riemannian covariant
derivative. Thus, for tensors, ; and ∇{} are same, while for spinors, (; ) involves both partial
derivatives and the Riemannian part of the spin connection, γ, as defined in the following.

� The 4 component Dirac-spinor is written as

ψ =

[
PA

Q̄B′

]
(1)

where PA and Q̄B′ are two dimensional complex vectors in C2 space. We redefine the spinors as:
P 0 = F1, P 1 = F2, Q̄1′ = G1 and Q̄0′ = −G2. This is in accordance with our primary source, [6],
the notations, conventions and representations wherein are generally adhered to in this paper.
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1 Introduction

Einstein’s general theory of relativity (GR), published in 1915, has been described as the most beautiful
of all the existing physical theories [1]. The background space-time on which classical GR is formulated
is a Riemannian manifold (denoted V4) which is torsion-less. In this case, the affine connection coincides
uniquely with the Levi-Civita connection and geodesics coincide with the path of shortest distance. This
is, however, not generally true for other, torsional manifolds, such as the manifold on which the Einstein-
Cartan-Sciama-Kibble (ECSK) – or simple, Einstein-Cartan (EC) – theory is formulated. In such a
theory, the geometrical structure of the manifold is modified such that the affine connection is no longer
required to be symmetric, and no longer coincides uniquely with the Levi-Civita connection.

There are good reasons to believe that at very high (∼GUT) energy scales – where the gravitational
interaction becomes comparable in strength to the other quantum interactions[22], the current formulation
of gravitation via General Relativity (GR) breaks down. Over the past century, there have been many
attempts to reconcile gravity with the other fundamental interactions; ECSK theory is one such attempt[7,
3, 2, 8, 10, 9].

Torsion, as an antisymmetric part of the affine connection was introduced by Elie-Cartan (1922) [7].
Also termed the U4 theories of gravitation, Einstein-Cartan theories work with an underlying manifold
that is non-Riemannian (unlike classical GR which is formulated on V4). The non-Riemannian part of
the manifold is associated with the spin density of matter, which plays the role of a source analogous to
the role of mass in Riemannian curvature. Here, mass and spin both play the dynamical role. While mass
“adds up” on classical length scales due to its monopole character, spin, being of dipole character, usually
averages out in the absence of external forces.

For this reason, matter, in the macro-physical regime, can be dynamically characterized entirely by the
energy-momentum tensor. In the quantum-gravitational regime, heuristic arguments suggest that a spin
density tensor plays an analogous role for spin, and related, as with mass and curvature, to some other
geometrical property of space-time. It is this requirement that EC/ECSK theory satisfies (the reader is
referred to my B.T.P. report 1 or [2] for a detailed treatment). When we minimally couple the Dirac field
on U4, we term this Einstein-Cartan-Dirac (ECD) theory. There are two independent geometric fields –
the metric and torsion – and one matter field ψ in this theory. Varying the corresponding Lagrangian,
we get three equations of motion, corresponding to the modified Einstein field equations, modified Dirac
equation, and a torsional coupling. On U4, the Dirac equation on U4 becomes non-linear; we call this the
Hehl-Datta (HD) equation after the seminal work in [3].

The usual method in approaching solutions to problems in GR is to use a local coordinate basis
êµ such that êµ = ∂µ. This coordinate basis field is covariant under general coordinate transformations.
However, it has been found useful to employ non-coordinate basis techniques in problems involving spinors.
Moreover, choosing the tetrad basis vectors as null vectors is extremely useful in some situations. This
formalism, where a given theory is expressed in the basis of null tetrads, is the celebrated Newman-Penrose
(NP) formalism. In this formalism, we replace tensors by their null tetrad components and represent these
components with certain distinctive symbols(a detailed study of this was done as a part of B.T.P. 1 and
can be found in B.T.P. report 1). Most of the important and physically relevant geometrical objects and
identities (eg. the Riemann curvature tensor, Weyl tensor, Bianchi identities, Ricci identities etc.) on U4

have been formulated in the NP formalism (such as in [14]).
It can be shown that there is a natural connection between spin dyads (Part of B.T.P. 1) and null

tetrads [6, 13]. Physical systems involving spinor fields can be fully expressed in the NP formalism (for
example, the Dirac equation on V4 has been studied extensively, ref. Chapter 12 in [6]). In addition,
many systems in gravitational physics are also studied in the NP formalism [6]. It appears that the NP
formalism is the shared vocabulary between the physics of quantum mechanical systems (with spinor
fields) and classical gravitational systems (having a metric and/or torsion).

In the present paper, we aim to formulate the full ECD equations in the NP formalism. We know
that the contorsion tensor is completely expressible in terms of the Dirac state [2]. We wish to then find
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expressions for the contorsion spin coefficients – which are the standard NP variables that account for
spin – explicitly in terms of the Dirac state. Using this, we can write the complete set of HD equations
in the NP formalism. In a sense, this work is to be read as a sequel to the work of S. Chandrasekhar
in (Chapter 12 of) [6], where Dirac equation in V4 has been given a full treatment in the NP formalism.
Some recent works attempt to do that but have not provided explicit corrections to the standard NP
variables due to torsion. Further, there are notational and sign inconsistencies in many such examples of
existing literature on in the field, and we aim to provide a comprehensive and self-contained treatment.

Finally, we attempt at solutions to the HD equations in a Minkowski space with torsion. This, apart
from being the simplest case to consider, is also motivated by certain physical intuitions which can be
considered as supporting, but non-essential, corollaries to this work. A recent essay, [4, 5, 11], suggests the
incorporation of new length scale in quantum gravity, thereby providing a symmetry between large and
small masses; a conjecture has been proposed therein to establish a duality between these two limits. This
conjecture is predicated on the necessary existence of solutions to the Hehl-Datta equations on Minkowski
space, representing the balance between the Riemannian and torsional effects which reduce to small and
large masses in the respective limits. However, notwithstanding the duality conjecture and the new length
scale proposed, our results hold for standard theory as well. All equations are expressed in terms of a
generic length scale l, which is what takes on different values in the case of the standard theory and in
the case of modified theories with new length scales.

2 Einstein-Cartan theory and its coupling to the Dirac field

2.1 Einstein-Cartan theory

In the Einstein-Cartan theory, the Riemannian manifold of ordinary GR (V4) is promoted to the
corresponding non-Riemannian manifold U4. As discussed, this latter manifold admits, in addition to the
structure of ordinary GR, a non-vanishing torsion. Torsion is a (rank 3) tensorial object defined as the
antisymmetric part of the affine connection:

Q µ
αβ = Γ µ

[αβ] =
1

2
(Γ µ
αβ − Γ µ

βα ) (2)

Similarly, the contorsion tensor K µ
αβ is given by K µ

αβ = −Q µ
αβ −Q

µ
αβ + Q µ

β α. This allows us to
write – in terms of the usual Christoffel symbols – the following relation:

Γ µ
αβ =

{
µ

αβ

}
−K µ

αβ (3)

The covariant derivative is then defined by

∇αBµ = ∂µB
µ + Γ µ

αβ Bβ (4)

When a matter field ψ is minimally coupled with gravity and torsion, its action is given as follows[2]:

S =

∫
d4x
√
−g
[
Lm(ψ,∇ψ, g)− 1

2k
R(g, ∂g,Q)

]
(5)

Here k = 8πG/c4, Lm is the matter Lagrangian density, and the second term represents the Lagrangian
density for the gravitational field. There are three fields in this Lagrangian: ψ, gµν , and Kαβµ, representing
the matter field, the metric, and the contorsion, respectively. Varying the action with respect to these,
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one arrives at the following three field equations:

δ(
√
−gLm)

δψ
= 0 (6)

δ(
√
−gR)

δgµν
= 2k

δ(
√
−gLm)

δgµν
(7)

δ(
√
−gR)

δKαβµ
= 2k

δ(
√
−gLm)

δKαβµ
(8)

Here, (6) leads us to the matter field equations on a curved space-time with torsion. The right hand
side of (7) is associated with

√
−gkTµν via the definition of Tµν , the metric energy-momentum tensor.

Similarly, the right hand side of (8) is associated with 2
√
−gkSµβα where Sµβα is the spin density tensor.

Together, these two yield the Einstein-Cartan field equations:

Gµν = kΣµν (9)

Tµβα = kSµβα (10)

In (9) the Gµν on the left hand side is the asymmetric Einstein tensor built from the asymmetric
connection, while Σµν is the asymmetric canonical (total) energy momentum tensor, constructed out
of the symmetric (metric) energy-momentum tensor and the spin density tensor. In (10), the so-called
‘modified’ torsion Tµβα is the traceless part of the torsion tensor, and is algebraically related to Sµβα on
the right. These three are related toeach other by:

Σµν = Tµν + (∇α + 2Qα)[Sµνα − Sναµ + Sαµν ] (11)

In the limit torsion → 0, we recover classical GR – (10) vanishes, and (9) reduces to the Einstein field
equations which couple the (symmetric) Einstein tensor to the (symmetric) metric energy-momentum
tensor.

2.2 EC coupling to the Dirac field

The theory generated from the minimal coupling of the Dirac field on U4 is what we term Einstein-
Cartan-Dirac (ECD) theory. In this theory, the matter field is the spinorial Dirac field ψ, for which the
Lagrangian density is given by (note the noncommuting covariant derivatives):

Lm =
i~c
2

(ψγµ∇µψ −∇µψγµψ)−mc2ψψ (12)

In ECD theory, the addition of spin degrees of freedom necessitates a more careful treatment of
anholonomic objects. As we define the affine connection, Γ, to facilitate parallel transport of geometrical
objects with world (Greek) indices, so do we define the spin connection γ for anholonomic objects (with
Latin indices). The affine connection can be decomposed into a Riemannian ({}) and a torsional part
(made up of the contorsion tensor, K) and similarly, the spin connection γ can also be decomposed into
a Riemannian (γo) and torsional part (once again, formed of the contorsion tensor). These components
are related via the following equation (following the notation in [14]):

γ (i)(k)
µ = γoµ

(i)(k) −K (k)(i)
µ (13)

where γoµ
(i)(k) is Riemannian part and K

(k)(i)
µ is the torsional part. Using these, we define the covariant

derivative for spinors, on V4 and U4:

ψ;µ = ∂µψ +
1

4
γoµ(b)(c)γ

[(b)γ(c)]ψ (on V4) (14)

∇µψ = ∂µψ +
1

4
γ0
µ(c)(b)γ

[(b)γ(c)]ψ − 1

4
Kµ(c)(b)γ

[(b)γ(c)]ψ (on U4) (15)
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Substituting this into (12) we obtain the explicit form of Lagrangian density; varying with respect to
ψ̄ as in (6) yields the Dirac equation on V4 and U4:

iγµψ;µ −
mc

~
ψ = 0 (on V4) (16)

iγµψ;µ +
i

4
K(a)(b)(c)γ

[(a)γ(b)γ(c)]ψ − mc

~
ψ = 0 (on U4) (17)

Next, we use (7) and Lagrangian density defined in (12) to obtain the gravitational field equations on
V4 and U4:

Gµν({}) =
8πG

c4
Tµν (on V4) (18)

Gµν({}) =
8πG

c4
Tµν −

1

2

(
8πG

c4

)2

gµνS
αβλSαβλ (on U4) (19)

Here, Tµν is the dynamical EM tensor which is symmetric and defined as:

Tµν = Σ(µν)({}) =
i~c
4

[
ψ̄γµψ;ν + ψ̄γνψ;µ − ψ̄;µγνψ − ψ̄;νγµψ

]
(20)

Equations (16) and (18) together form the system of equations of Einstein-Dirac theory.
We now move to the full Einstein-Cartan-Dirac theory . Using the Lagrangian density defined in (12),

we can define the spin density tensor:

Sµνα =
−i~c

4
ψ̄γ[µγνγα]ψ (21)

Using (21) and (8) , (17) can be simplified to give the Hehl-Datta equation [2][3]. This, along with (19)
and the relation between the modified torsion tensor and spin density tensor, define the field equations of
the Einstein-Cartan-Dirac theory:

Gµν({}) =
8πG

c4
Tµν −

1

2

(
8πG

c4

)2

gµνS
αβλSαβλ (22)

Tµνα = −Kµνα =
8πG

c4
Sµνα (23)

iγµψ;µ = +
3

8
L2
Plψγ

5γ(a)ψγ
5γ(a)ψ +

mc

~
ψ (24)

(25)

where LPl is the Planck length.

3 Introducing a unified length scale LCS in quantum gravity

Both Dirac theory and general relativity claim to hold for all values of m and it is only through
experiments that we find that Dirac equation holds if m� mPl while Einstein equations hold if m� mP l
From the theoretical viewpoint, it is unsatisfactory that the two theories should have to depend on the
experiment to establish their domain of validity. Therefore a more general length scale was proposed
by recent works of T. P. Singh [4][5] where motivation has been provided for unifying the Compton
wavelength (λc = λ

~c) and Schwarzschild radius (Rs = 2GM
c2

) of a point particle with mass m into one
single length scale, the Compton-Schwarzschild length (LCS). Such a treatment compells us to introduce
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torsion, and identify the Dirac field with the complex torsion field. An action principle has been proposed
with this new length scale which permits the Dirac equation and the Einstein field equations as mutually
dual limiting cases. The modified action proposed is as follows:

L2
Pl

~
S =

∫
d4x
√
−g
[
R− 1

2
LCSψ̄ψ + L2

CSψ̄iγ
µ∂µψ

]
(26)

Using this new length scale, LCS , we can rewrite the Einstein-Cartan-Dirac equations as[5]:

Gµν({}) =
8πL2

CS

~c
Tµν +

(
8πL2

CS

~c

)2

τµν (27)

Tµνγ =
8πL2

CS

~c
Sµνγ (28)

iγaψ;a = +
3

8
L2
CSψ̄γ

5γaψγ
5γaψ +

1

2LCS
ψ = 0 (29)

A note on length scales: We use the l to denote a length scale in the theory. For standard ECD theory,

the typical scales that can be considered are the Planck length, with l = LPl =
√

G~
c3

, half the Compton

wavelength, with l1 = λC
2 = ~

2mc , or the Schwarzschild radius, with l2 = Rs = 2GM
c2

. For the modified
ECD theory, we take l = LCS , in terms of the new unified length scale.

This system of equations is the same as the standard ECD equations, except that in Eqns.(27) and
(28) lPl is replaced by LCS in Eqns. (29) the LPl in the nonlinear term, and the λc in the mass term are
both replaced by LCS . These equations hold for all values of the mass m, and it is then only natural that
the coupling constant should be LCS , instead of LPl and λc, for why should the latter two appear in the
ECD equations for a large mass?

3.1 Duality between Curvature and Torsion

We notice from the above that curvature vanishes in the small mass limit, whereas in the large mass
limit it is torsion that vanishes, because GR holds in the large mass limit. This motivates us to ask if this
kind of curvature - torsion duality could be generic. Indeed, we have remarked earlier that since LCS is
the only coupling constant in the theory, it will label a large mass solution of the field equations, and also
label its dual small mass solution. However, we expect the large mass solution to be gravity dominated,
and the small mass solution to be torsion dominated. This is possible only if for a given LCS there are
two solutions, one that is curvature dominated, and another that is torsion dominated. We call this the
curvature - torsion duality, and construct it as follows.The total curvature R on a space-time manifold
can be written as a sum of contribution Q because of torsion and an additional the Reimannean curvature
R0 made from the symmetric Levi-Civita connection:

Rρθµν = R0ρ
θµν +Qρθµν := 0 (30)

where Qρθµν =
{}
∇µKρ

θν −
{}
∇νKρ

θµ + Kσ
θνK

ρ
σµ −Kσ

θµK
ρ
σν and R0ρ

θµν is the curvature of Levi-Civita
connection, K is the contortion tensor and the covariant derivative is with respect to the Levi-Civita
connection.

Suppose we have a curvature dominated large mass solution S1 with a given LCS and the set of
curvature parameters [R(1), R0(1), Q(1)]. We define the dual torsion dominated solution S2 having the
same LCS and the set of curvature parameters [R(2), R0(2), Q(2)] by the following map:

R(1)−Q(1) = Q(2)−R(2) (31)
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which means that the excess of curvature over torsion for S1 equals the excess of torsion over curvature
for S2. This duality implies that R0(2) = −R0(1). In the large mass limit, Q(1) is zero and we have the
pure curvature solution R(1) = R0(1) which is the V4 theory. In the small mass limit, R(2) is zero, and
we have the solution Q(2) = −R0(2). Since R(2) is zero, this is teleparallel gravity, and the duality map
implies that R(1) = Q(2). This duality provides an intriguing connection between GR, ECSK theory,
and teleparallel gravity. The first and third theories are respectively the large mass and small mass limit
of the ECSK theory and are connected by a duality. We have provided a symmetry between curvature
and torsion, and provided a physical basis for Poincare gauge gravity.

This is qualitatively depicted in Fig. (1) where R − Q is plotted against z = ln (m/mPl). The dual
masses M and m have the same value of LCS , and the curvature dominated solution S1 in the first quad-
rant is mapped to the torsion dominated solution S2 in the third quadrant. As the mass is reduced, a
solution ‘rolls down’ from the first quadrant to the origin mPl and transits to the solution set in the third
quadrant. There is also a ‘mirror universe’ whose significance remains to be investigated: For a given
LCS the curvature dominated large mass solution is also realized for the dual small mass. This provides
the mirror solution which rolls down from the second to the fourth quadrant, and where small masses
are curvature dominated, while large masses are torsion dominated. At the transition point m = mPl we
have R − Q = 0 so that R0 = 0: this is a Minkowski at space-time where the total curvature is sourced
only by torsion. One might ask if it is justified to couple the quantum mechanical Dirac field with classi-

Figure 1: The curvature - torsion duality

cal curvature. The answer is that the Dirac field is quantum only when curvature and torsion are neglected.

Furthermore, as we saw, the coupling constant G arises only when the mass becomes large, as if
to suggest that gravity emerges only when sufficient mass has accumulated, and then gravity is strictly
classical. Only torsion has to be second quantized, which makes sense, because torsion is explicitly
expressed in terms of the Dirac state.
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4 The Newman-Penrose formalism and ECD in NP

4.1 Tetrads

It is common in the literature[6] to use tetrads (or vierbeins) to define spinors on a curved space-time
(in V4 as well as U4)1. In this formalism, the transformation properties of spinors are defined in a flat
(Minkowski) space, locally tangent to U4. We know that at each point in space-time, we can define a
coordinate basis vector field êµ = ∂µ which is covariant under general coordinate transformations. The
basis vectors associated with spinors, however, are covariant under local Lorentz transformations. Hence,
we define, at each point of our manifold, a set of four orthonormal basis vectors (forming the tetrad field)
given by êi(x). These comprise four vectors (one for each µ) at each point, and the tetrad field is governed
by the relation êi(x) = eiµ(x)êµ where the transformation matrix eiµ is such that:

e(i)
µ e

(k)
ν η(i)(k) = gµν (32)

The transformation matrix e
(i)
µ allows us to convert the components of any world tensor (a tensor

which transforms according to general coordinate transformations) to the corresponding components in
a local Minkowskian space (the latter of these being covariant under local Lorentz transformations).
Directional derivatives of a smooth scalar field φ in the direction of ea is defined as the tangent contravari-
ant vectors

e(a)(φ) := e µ
(a)

∂φ

∂xµ
(33)

For the components of a vector field,

A(a),(b) = A(a);(b)γ(c)(a)(b)A
(c) (34)

where γ(c)(b)(a) are the Ricci rotation coefficients which are anti-symmetric in first pair of indices and are
defined as the rotation of e(a) when dragged along e(b) with respect to e(c)

γ(c)(a)(b) := e ρ
(c) e(a)ρ;µe

µ
(b) = η(c)(d)γ

(d)
(a)(b) (35)

In tetrad formalism, Ricci identities, Bianchi identities and the Lie bracket (which itself is a tangent vector
and hence can be written in the same basis as e(a)) are respectively

R(a)(b)(c)(d) = γ(a)(b)(c),(d) + γ(a)(b)(d),(c) + γ(b)(a)(f)[γ
(f)

(c) (d) − γ
(f)

(d) (c) ]

+γ(f)(a)(c)γ
(f)

(b) (d) − γ(f)(a)(d)γ
(f)

(b) (c)

(36)

R(a)(b)[(c)(d)|(f)] =
1

6

∑
[(c)(d)(f)]

R(a)(b)(c)(d),(f) − η(n)(m)[γ(n)(a)(f)R(m)(b)(c)(d) + γ(n)(b)(f)R(a)(m)(c)(d)

+γ(n)(c)(f)R(a)(b)(m)(d) + γ(n)(d)(f)R(a)(b)(c)(m)]

(37)

[e(a), e(b)] = C
(c)

(a)(b)e(c) (38)

where C
(c)

(a)(b) is called the structure constant and can be written as

C
(c)

(a)(b) = γ
(c)

(b)(a) − γ
(c)

(a)(b) (39)

There are 36 Ricci identities (34), 20 Bianchi identities (35) and 24 commutation relations (36).

1While this is often the case, there are other formalisms that can be used[23]
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4.2 Introduction to the NP formalism

The Newman-Penrose (NP) formalism was formulated by Newman and Penrose in their work [15]. It
is a special case of tetrad formalism; where we choose our tetrad as a set of four orthonormal null vectors:

eµ(0) = lµ, eµ(1) = nµ, eµ(2) = mµ, eµ(3) = m̄µ (40)

where lµ, nµ are real and mµ, m̄µ are complex. The orthonormality condition on null tetrads imply

l.m = l.m̄ = n.m = n.m̄ = 0,

l.l = n.n = m.m = m̄.m̄ = 0,

l.n = 1 and m.m̄ = −1

(41)

The null tetrad indices are raised and lowered using the flat space-time metric

η(i)(j) = η(i)(j) =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 (42)

and the tetrad vectors satisfy the equation gµν = e
(i)
µ e

(j)
ν η(i)(j). In this formalism, we replace tensors by

their tetrad components and represent these components with a collection of distinctive symbols which
are now standard in literature which can be found in [6] and [14] for V4 and U4 respectively.

4.2.1 Petrov Classification

Rotations in tetrad frame are of three major types:

Type I: l→ l,m→ m+ al, m̄ = m̄+ a∗l and n→ n+ a∗m+ am̄+ aa∗l

Type II: n→ n, m→ m+ bn, m̄→ m̄+ b∗n and l→ l + b∗m+ bm̄+ bb∗n

Type III: l→ A−1l, n→ An,m→ eιθm and m̄→ e−ιθm̄

where a and b are two complex functions and A and θ are two real functions.
From [6] and [14], we find that the form of Ψ0 remains same in V4 and U4 theory. Under rotation of type
II with b as a parameter, Ψ0 transforms to

Ψ
(1)
0 = Ψ0 + 4bΨ1 + 6b2Ψ3 + b4Ψ4 (43)

This can be made 0 by choosing b to be a root of this equation. The corresponding new directions
are called principle null-directions and based on the number of distinct roots, we make the following
classifications:

∗ If all the roots of this equation are distinct, then by a rotation of Type II, Ψ0 can be made 0. By
rotation of Type I, we can make Ψ4 vanish. Such solutions are called Petrov Type I .

∗ If two roots are coincident, then by a rotation of Type II,Ψ0 and Ψ1 can be made 0. By rotation of
Type I, we can make Ψ4 vanish. Such solutions are called Petrov Type II .

∗ If equation (2.45) has two distinct double roots, then by a rotation of Type II, followed by rotation of
Type I, we can make Ψ0, Ψ1, Ψ3 and Ψ4 vanish. Such solutions are called Petrov Type D .

∗ If three roots are coincident, then by a rotation of Type II, Ψ0, Ψ1 and Ψ2 can be made 0. By rotation
of Type I, we can make Ψ4 vanish. Such solutions are called Petrov Type III .

∗ If all four roots are coincident, then by a rotation of Type II, we can make Ψ0, Ψ1, Ψ2 and Ψ3 vanish.
Such solutions are called Petrov Type N .

A much more rigorous analysis for this in V4 can be found in [6]
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4.3 Spinor analysis

We define four null tetrads (and their corresponding co-vectors) on Minkowski space (raised and
lowered using ηµν):

la =
1√
2

(1, 0, 0, 1), ma =
1√
2

(0, 1,−i, 0), m̄a =
1√
2

(0, 1, i, 0), na =
1√
2

(1, 0, 0,−1) (44)

We also define the following Van der Waarden symbols:

σa =
√

2

[
la ma

m̄a na

]
σ̃a =

√
2

[
na −ma

−m̄a la

]
(45)

For the Dirac gamma matrices, we use the complex version of the Weyl (chiral) representation:

γa =

[
0 (σ̃a)∗

(σa)∗ 0

]
where γ0 =

[
0 1
1 0

]
, γi =

[
0 (−σi)∗

(σi)∗ 0

]
(46)

where a = (0, 1, 2, 3).
The complex Weyl representation is used so that the Dirac bispinor and gamma matrices defined in

equation 1 and 46 remains consistent with equations (97) and (98) of section (103) in [6] (comparing with
our standard reference, [6], we recover equation (99) in complex form).

In order to represent spinorial objects (objects comprising spinors and gamma matrices) on a curved
space-time, we use the following prescription on the tetrad formalism[13], viz. – Let M be a curved
manifold with all conditions necessary for the existence of spin structure, and let U be a chart onM with
coordinate functions (xα). Then, for representing spinorial objects, we (i) choose an orthonormal tetrad
field eµ(a)(x

α) on U , (ii) define the Van der Waarden symbols σ(a) and σ̃(a) in this tetrad basis exactly

as defined on Minkowski space in (45) and choose a γ representation (46); (iii) then, the σ’s in a local
coordinate frame are then obtained via:

σµ(xα) = eµ(a)(x
α)σ(a) =

√
2

[
lµ mµ

m̄µ nµ

]
σ̃µ = eµ(a)(x

α)σ̃(a) =
√

2

[
nµ −mµ

−m̄µ lµ

]
(47)

with the γ matrices obeying a similar transformation.
Thus, objects with world indices (containing world-indexed γ matrices or spinors) are now functions of

chosen orthonormal tetrads. These are defined a priori in a local tetrad basis (with components identical
to those defined on a flat Minkowski space-time) and then carried into a curved space via the tetrads.
This is unlike other geometrical world objects which are first defined naturally at a point in a manifold
and subsequently carried to a local tangent space via tetrads.

We now aim to carry the Dirac equation (in NP) on V4 into the U4 space, building upon Section
102(d) of [6]. In order to calculate the covariant derivative of a spinor in U4, we require the spinor affine
connection coefficients. They are defined via the requirement that εAB and σ’s are covariantly constant.
The analysis in [6] – until Eq. 91 in the book – still stands; however, the covariant derivatives are promoted
to those acting on U4. They are defined as follows::

∇µPA = ∂µP
A + ΓAµBP

B (48)

∇µQ̄A
′

= ∂µQ̄
A′ + Γ̄A

′
µB′Q̄

B′ (49)

The Γ terms here are added to the partial derivative when working with objects in U4. Their values
can completely be determined in terms of the spin coefficients, and we can readily evaluate its tetrad
components. Using Friedman’s lemma (see pg. 542 of [6] for a full proof), we can express the various
spin coefficients Γ(a)(b)(c)(d′) in terms of covariant derivatives of the basis null vectors l, n,m and m̄. The
covariant derivative here is exactly as defined in equation Eq. 3.3 (and explicitly written in Eq. 3.5) of
[14].
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Using this covariant derivative, it is readily seen how Eq. 95 and Eq. 96 in [6] get modified; viz.
Γ0000′ = κo + κ1 and Γ1101′ = µo + µ1 (Naughts in the superscript are used to indicate the original
spin coefficients defined on V4). The 12 independent spin coefficients are calculated in terms of covariant
derivatives of null vectors and defined in the following table2 (50):

Γ(a)(b)(c)(d′) =

(c)(d’)
(a)(b)

00 01 or 10 11

00’ κo + κ1 εo + ε1 πo + π1

10’ ρo + ρ1 αo + α1 λo + λ1

01’ σo + σ1 βo + β1 µo + µ1

11’ τ o + τ1 γo + γ1 νo + ν1

(50)

4.4 Contorsion spin coefficients in terms of Dirac spinor components

The spin density tensor of matter (Sµνλ) can be written as a world tensor in U4 made up of the Dirac
spinor, its adjoint, and gamma matrices:

Sµνα =
−i~c

4
ψ̄γ[µγνγα]ψ (51)

The ECD field equations suggest that Tµνα = kSµνα where Tµνα is the modified torsion tensor defined
in Eq. 2.3 of [2]. It can be shown that, for Dirac field, Tµνα = −Kµνα = kSµνα as in Eq. 5.6 of [3]. Here,

k is a gravitational coupling constant containing the length scale l, i.e., 8πl2

~c . For the standard theory,
l = LPl and for modified theory, l = LCS . Substituting (51) in the field equations, we obtain following:

Kµνα = −kSµνα = 2iπl2ψ̄γ[µγνγα]ψ (52)

where the γµ’s are those defined in (46), generalised with world indices using orthonormal tetrads. We
subsequently rewrite the completely anti-symmetric tensor, Kµνα (of which only four independent com-
ponents are excited by the Dirac field) in the NP formalism; i.e., in the null tetrad basis, as follows:

K(i)(j)(k) = e(i)µe(j)νe(k)αK
µνα (53)

where e(i)µ = (lµ, nµ,mµ, m̄µ) for i = 1, 2, 3, 4 To calculate the contorsion spin coefficients, we need to

evaluate the contorsion tensor with world indices as defined in (171). Consider the product γαγβγµ, which
is defined as:

γαγβγµ =

(
0 (σ̃α)∗(σβ)∗(σ̃µ)∗

(σα)∗(σ̃β)∗(σµ)∗ 0

)
(54)

The explicit form of this matrix is fairly expansive, and a full treatment is given in Appendix A. Eventually,
we substitute in for the Dirac bispinor (as defined in [6]), and obtain the expressions for the contorsion
spin coefficients in terms of the spinor components. We have, for example, for ρ –

ρ = −K(1)(3)(4) = −2
√

2iπl2[F2F̄2 −G1Ḡ1] (55)

All the contorsion spin coefficients can be found in a similar fashion. After evaluating those, the eight
non-zero spin coefficients excited by the Dirac spinor given in (1) – of which four are independent – are
as follows:

τ1 = −2β1 = K123 = 2
√

2iπl2(F2F̄1 +G2Ḡ1) (56)

π1 = −2α1 = K124 = 2
√

2iπl2(−F1F̄2 −G1Ḡ2) (57)

µ1 = −2γ1 = −K234 = 2
√

2iπl2(F1F̄1 −G2Ḡ2) (58)

ρ1 = −2ε1 = −K134 = 2
√

2iπl2(G1Ḡ1 − F2F̄2) (59)

(60)

2In the generic case, all 12 have contorsion spin coefficients
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From the above relations, we have:

µ1 = −µ∗1 (61)

ρ1 = −ρ∗1 (62)

π1 = +τ∗1 (63)

The table in (50) is modified as follows:

Γ(a)(b)(c)(d′) =

(c)(d’)
(a)(b)

00 01 or 10 11

00’ κ0 ε0 − ρ1/2 π0 + π1

10’ ρ0 + ρ1 α0 − π1/2 λ0

01’ σ0 β0 − τ1/2 µ0 + µ1

11’ τ0 + τ1 γ0 − µ1/2 ν0

(64)

4.5 The Dirac equation with torsion in the NP formalism

The Dirac equation on U4 (also known as the Hehl-Datta equation) is:

iγµ∇µψ =
mc

~
ψ =

ψ

2l
(65)

where ∇ here denotes covariant derivative on U4. l = λc
2 for standard theory and l = Lcs for modified

theory. It can be written in the following matrix form:

i

(
0 (σ̃µ)∗

(σµ)∗ 0

)
∇µ
(
PA

Q̄B′

)
=

1

2
√

2l

(
PA

Q̄B′

)
(66)

This can be written as a pair of matrix equations:(
σµ00′ σµ10′

σµ01′ σµ11′

)
∇µ
(
P 0

P 1

)
+

i

2
√

2l

(
−Q̄1′

Q̄0′

)
= 0 (67)(

σµ11′ −σµ10′

−σµ01′ σµ00′

)
∇µ
(
−Q̄1′

Q̄0′

)
+

i

2
√

2l

(
P 0

P 1

)
= 0 (68)

Working out explicitly, the first equation is:

i

2
√

2l
Q̄1′ = σµ00′∇µP

0 + σµ10′∇µP
1 = (∂00′P

0 + Γ0
i00′P

i) + (∂10′P
1 + Γ1

i10′P
i)

= (D + Γ0
000′P

0 + Γ0
100′P

1) + (δ∗ + Γ1
010′P

0 + Γ1
110′P

1)

⇒ i

2
√

2l
G1 = (D + ε0 − ρ0)F1 + (δ∗ + π0 − α0)F2 +

3

2
(π1F2 − ρ1F1)

(69)

where we have used the gamma matrices as defined in (46), computed the covariant derivatives using
(48), (49) and the spin connections in terms of contorsion spin coefficients as given in (64). Using this
procedure (full treatment given in Appendix B), the four Dirac equations are obtained as:

(D + ε0 − ρ0)F1 + (δ∗ + π0 − α0)F2 +
3

2
(π1F2 − ρ1F1) = ib(l)G1 (70)

(∆ + µ0 − γ0)F2 + (δ + β0 − τ0)F1 +
3

2
(µ1F2 − τ1F1) = ib(l)G2 (71)

(D + ε∗0 − ρ∗0)G2 − (δ + π∗0 − α∗0)G1 −
3

2
(τ1G1 − ρ1G2) = ib(l)F2 (72)

(∆ + µ∗0 − γ∗0)G1 − (δ∗ + β∗0 − τ∗0 )G2 −
3

2
(µ1G1 − π1G2) = ib(l)F1 (73)
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Substituting in the spinorial form of the contorsion spin coefficients in (56) - (60), we obtain:

(D + ε0 − ρ0)F1 + (δ∗ + π0 − α0)F2 + ia(l)[(−F1F̄2 −G1Ḡ2)F2 + (F2F̄2 −G1Ḡ1)F1] = ib(l)G1 (74)

(∆ + µ0 − γ0)F2 + (δ + β0 − τ0)F1 + ia(l)[(F1F̄1 −G2Ḡ2)F2 − (F2F̄1 +G2Ḡ1)F1] = ib(l)G2 (75)

(D + ε∗0 − ρ∗0)G2 − (δ + π∗0 − α∗0)G1 − ia(l)[(F2F̄2 −G1Ḡ1)G2 + (F2F̄1 +G2Ḡ1)G1] = ib(l)F2 (76)

(∆ + µ∗0 − γ∗0)G1 − (δ∗ + β∗0 − τ∗0 )G2 − ia(l)[(F1F̄1 −G2Ḡ2)G1 − (−F1F̄2 −G1Ḡ2)G2] = ib(l)F1 (77)

where a(l) = 3
√

2πl2, b(l) = 1
2
√

2l
.

These equations can be condensed into the following form:

(D + ε0 − ρ0)F1 + (δ∗ + π0 − α0)F2 = i[b(l) + a(l)ξ]G1 (78)

(∆ + µ0 − γ0)F2 + (δ + β0 − τ0)F1 = i[b(l) + a(l)ξ]G2 (79)

(D + ε∗0 − ρ∗0)G2 − (δ + π∗0 − α∗0)G1 = i[b(l) + a(l)ξ∗]F2 (80)

(∆ + µ∗0 − γ∗0)G1 − (δ∗ + β∗0 − τ∗0 )G2 = i[b(l) + a(l)ξ∗]F1 (81)

where ξ = F1Ḡ1 + F2Ḡ2 and ξ∗ = F̄1G1 + F̄2G2.

4.6 The dynamical EM tensor Tµν and spin density in the NP formalism

The equation of interest here is (19); given as: Gµν({}) = 8πl2

~c Tµν −
1
2

(
8πl2

~c

)2

gµνS
αβλSαβλ. The

dynamical EM tensor on U4 is given by equation 20. In the above equation, the second term in the RHS
is given as 4πl2

~c gµνS
αβγSαβγ which can now be written as

4πl2

~c
gµνS

αβγSαβγ = 6π~cl2gµν(F1Ḡ1 + F2Ḡ2)(F̄1G1 + F̄2G2) = 6π~cl2gµνξξ∗ (82)

i.e., proportional to the ζ parameter introduced.

4.7 Einstein Energy-Momentum Relations in NP formalism

We set up two coordinate systems on 4-dimensional Minkowski space -orthonormal coordinate system
(x1, x2, x3, x4) and null coordinate system (r,s,u,v). The partial derivatives w.r.t these coordinates in
terms of Newman-Penrose variables are

∂1 =
D + ∆√

2
, ∂2 =

δ + δ∗√
2
, ∂3 =

i(δ − δ∗)√
2

, ∂4 =
D −∆√

2
, and (83)

∂r = D, ∂s = ∆, ∂u = δ, ∂v = δ∗, ∂r = D, ∂s = ∆, ∂u = δ, ∂v = δ∗ (84)

The EM tensor Tij which appears on the RHS of equation (4.10) is the Riemann part of symmetrized
dynamical EM tensor. On Minkowski space, it is given as

Tij = Σ(ij)({}) =
i~c
4

(
ψ̄γi∂jψ + ψ̄γj∂iψ − ∂iψ̄γjψ − ∂jψ̄γiψ

)
(85)

We find the value of this tensor in both, orthonormal as well as the null system of coordinates. In
both the systems, we express the tensor in Newman-Penrose variables (D, ∆, etc.)
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5 Solutions to HD equations in Minkowski space

5.1 Motivation

In the previous section, we formulated the ECD equations in the NP formalism. In this section, we aim
to solve them. The simplest space-time with torsion is the Minkowski (ηµν) space-time with a manifold
that has non-zero torsion. In this space-time, the Dirac equation on U4 looks very similar to the linear
Dirac equation with modified mass (the torsion-related term which modifies it is bilinear in the Dirac
states). In this spirit, we will consider modifications (due to torsion) to well-studied solutions to the linear
Dirac equation (eg. plane wave solutions).

In addition, there are good (physical) reasons to work within Minkowski space-time, to find solution(s)
of the HD equations incorporating torsion. In a recent work [4, 5, 11], a duality between large and small
masses (correspondingly, between Riemannian curvature and torsion) has been proposed, explicitly con-
structed in the “curvature-torsion duality conjecture” therein. For this conjecture to hold true, a solution
to Dirac equation on Minkowski space with torsion must exist – along with certain other conditions. One
such additional condition is the vanishing (T − S)µν tensor, as defined in Appendix C.

While we proceed in the following section to find solutions to the HD equations on Minkowski space for
their own sake, the reader may find, in [11], useful extensions to this work. To this end, in the Appendices
(ref. Appendix C) we have also computed the (T − S)µν tensor in certain cases, for completeness.

5.2 The Hehl-Datta equations on Minkowski space with torsion

The HD equations on Minkowski space with torsion (in the NP formalism) are as follows:

DF1 + δ∗F2 = i[b(l) + a(l)ξ]G1 (86)

∆F2 + δF1 = i[b(l) + a(l)ξ]G2 (87)

DG2 − δG1 = i[b(l) + a(l)ξ∗]F2 (88)

∆G1 − δ∗G2 = i[b(l) + a(l)ξ∗]F1 (89)

In a Cartesian coordinate system (ct, x, y, z)3 we have:

(∂0 + ∂3)F1 + (∂1 + i∂2)F2 = i
√

2[b(l) + a(l)ξ]G1 (90)

(∂0 − ∂3)F2 + (∂1 − i∂2)F1 = i
√

2[b(l) + a(l)ξ]G2 (91)

(∂0 + ∂3)G2 − (∂1 − i∂2)G1 = i
√

2[b(l) + a(l)ξ∗]F2 (92)

(∂0 − ∂3)G1 − (∂1 + i∂2)G2 = i
√

2[b(l) + a(l)ξ∗]F1 (93)

In cylindrical polar coordinates (ct, r, φ, z), we have:

r∂tF1 + eiφr∂rF2 + ieiφ∂φF2 + r∂zF1 = ir
√

2[b(l) + a(l)ξ]G1 (94)

r∂tF2 + e−iφr∂rF1 − ie−iφ∂φF1 − r∂zF2 = ir
√

2[b(l) + a(l)ξ]G2 (95)

r∂tG2 − e−iφr∂rG1 + ie−iφ∂φG1 + cr∂zG2 = ir
√

2[b(l) + a(l)ξ∗]F2 (96)

r∂tG1 − eiφr∂rG2 − ieiφ∂φG2 − r∂zG1 = ir
√

2[b(l) + a(l)ξ∗]F1 (97)

Likewise, in spherical polar coordinates (ct, r, θ, φ):

3Setting c = 1 by convention
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∂tF1 + cos θ∂rF1 −
sin θ

r
∂θF1 +

ieiφ

r sin θ
∂φF2 + eiφ sin θ∂rF2 +

eiφ cos θ

r
∂θF2 = i

√
2[b(l) + a(l)ξ]G1

(98)

∂tF2 − cos θ∂rF2 −
sin θ

r
∂θF2 +

ie−iφ

r sin θ
∂φF1 + e−iφ sin θ∂rF1 −

e−iφ cos θ

r
∂θF1 = i

√
2[b(l) + a(l)ξ]G2

(99)

∂tG2 + cos θ∂rG2 −
sin θ

r
∂θG2 −

ie−iφ

r sin θ
∂φG1 − e−iφ sin θ∂rG1 +

e−iφ cos θ

r
∂θG1 = i

√
2[b(l) + a(l)ξ∗]F2

(100)

∂tG1 − cos θ∂rG1 −
sin θ

r
∂θG1 −

ieiφ

r sin θ
∂φG2 − eiφ sin θ∂rG2 −

eiφ cos θ

r
∂θG2 = i

√
2[b(l) + a(l)ξ∗]F1

(101)

6 Solutions to Hehl-Datta equations on Minkowski space-time

6.1 Attempting a non-static solution by reduction of the problem to 1+1 dimension

Assuming the Dirac state to be a function of only t and z, and further assuming an ansatz of the form
F1 = G2 and F2 = G1, the four equations in Cartesian coordinates [90 - 93] as well as four equations in
cylindrical coordinates [94 - 97] reduce to following two independent equations4

∂tψ1 + ∂zψ2 − i
√

2bψ1 +
ia√

2
(|ψ2|2 − |ψ1|2)ψ1 = 0 (102)

∂tψ2 + ∂zψ1 + i
√

2bψ2 +
ia√

2
(|ψ1|2 − |ψ2|2)ψ2 = 0 (103)

where, ψ1 = F1 + F2 and ψ2 = F1 − F2. We put
√

2b = −m and a = 2
√

2λ and obtain following:

∂tψ1 + ∂zψ2 + imψ1 + 2iλ(|ψ2|2 − |ψ1|2)ψ1 = 0 (104)

∂tψ2 + ∂zψ1 − imψ2 + 2iλ(|ψ1|2 − |ψ2|2)ψ2 = 0 (105)

This is identical to Eqn. 1 in [21]. This work by Alvarez et.al is the study of the convergence and
stability of the difference scheme for the non-linear Dirac equation in 1+1 dimension. Following this work,
the solutions to above set of equations are found using the following solitary wave as ansatz:

ψ =

(
ψ1

ψ2

)
=

(
A(z)
iB(z)

)
e−iΛt (106)

where A and B are real functions of z. Substituting this into the above equations, we obtain:

B′ − (
√

2b+ Λ)A− a√
2

(A2 −B2)A = 0 (107)

A′ − (
√

2b− Λ)B − a√
2

(A2 −B2)B = 0 (108)

Solving these differential equations gives the following solutions for A(z) and B(z).

4We note that ξ = 2Re(F1F̄2), thus ξ = ξ∗. Furthermore, a and b are henceforth shorthand for a(l) and b(l).
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A(z) =
−i23/4(

√
2b− Λ)√
a

√
(
√

2b+ Λ) cosh(z
√

2b2 − Λ2)

[Λ cosh(2z
√

2b2 − Λ2)−
√

2b]
(109)

B(z) =
−i23/4(

√
2b+ Λ)√
a

√
(
√

2b− Λ) sinh(z
√

2b2 − Λ2)

[Λ cosh(2z
√

2b2 − Λ2)−
√

2b]
(110)

As mentioned, this is the generalization of the equations for A(z) and B(z) in [21] (see Section III).
Putting λ = 0.5 (equivalently a =

√
2) and m = 1 (equivalently m0 = −1) in (109), (110), reduces to the

equations on page 9 of [21]. This solution is also found in [16] with a(l1) = a(LPl) and b(l2) = b(λc).

F1 = G2 =

√
(2b2 − Λ2)

2

[
−i23/4

√
a

√
(
√

2b− Λ) cosh(z
√

2b2 − Λ2)

[Λ cosh(2z
√

2b2 − Λ2)−
√

2b]
+

23/4

√
a

√
(
√

2b+ Λ) sinh(z
√

2b2 − Λ2)

[Λ cosh(2z
√

2b2 − Λ2)−
√

2b]

]
e−iΛt

(111)

F2 = G1 =

√
(2b2 − Λ2)

2

[
−i23/4

√
a

√
(
√

2b− Λ) cosh(z
√

2b2 − Λ2)

[Λ cosh(2z
√

2b2 − Λ2)−
√

2b]
− 23/4

√
a

√
(
√

2b+ Λ) sinh(z
√

2b2 − Λ2)

[Λ cosh(2z
√

2b2 − Λ2)−
√

2b]

]
e−iΛt

(112)

ξ =
−2
√

2(2b2 − Λ2)(
√

2b− Λ cosh(2z
√

2b2 − Λ2)

a[Λ cosh(2z
√

2b2 − Λ2)−
√

2b]2
(113)

The probability density is given by the zeroth component of the four-vector fermion current jµ = ψ̄γµψ.
Hence, it is j0 = ψ̄γ0ψ = ψ†ψ. For our solution given above, it is given by

j0 = ψ†ψ = 2
(
|F1|2 + |F2|2

)
(114)

=
(
|A|2 + |B|2

)
(115)

We will now define new dimensionless variables:

p =
√

2bz [p] = 0 (116)

w = − Λ√
2b

[w] = 0 (117)

Ã(z) =

√
a

2
√
b
A(z) [Ã(z)] = 0 (118)

B̃(z) =

√
a

2
√
b
B(z) [B̃(z)] = 0 (119)

j̃0 =
a

4b
j0 [j̃0] = 0 (120)

With these definitions. A(p) and B(p) take the following form:

A(z) =
2i(1 + w)√

a

√
b(1− w) cosh(p

√
1− w2)

(w cosh(2p
√

1− w2) + 1)
(121)

B(z) =
2i(1− w)√

a

√
b(1 + w) sinh(p

√
1− w2)

(w cosh(2p
√

1− w2) + 1)
(122)
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There are total six different cases for the values of w which gives different solutions. In each case, we will
analyze the limit of zero-torsion also [That is the case of linear Dirac equation]. Vanishing of torsion is
characterized by the limit a(l2) = 3

√
2πL2

Pl −→ 0. So in a torsion-less case, differential equations become:
(we have incorporated dimensionless constants in these equations)

B′ = (1− w)A (123)

A′ = (1 + w)B (124)

• Case 1: w ∈ (−∞,−1)

Ã(z) = i(1 + w)

√
(|w|+ 1) cos(p

√
w2 − 1)

(1− |w| cos(2p
√
w2 − 1))

(125)

B̃(z) = i(w − 1)

√
(|w| − 1) sin(p

√
w2 − 1)

(1− |w| cos(2p
√
w2 − 1)

(126)

a

4b
j0 = j̃0 =

[
(w + 1)2(|w|+ 1) cos2(p

√
w2 − 1) + (w − 1)2(|w| − 1) sin2(p

√
w2 − 1)

(1− |w| cos(2p
√
w2 − 1)2

]
(127)

Comments on case 1 : This solution has infinite singularities placed periodically over non-zero values of
‘p’. It is clearly unphysical. A specimen of this case with (w=-2) has been plotted in the left column of
fig (4)

Contrasting case 1 with linear (non-torsion) Dirac equation: For w ∈ (−∞,−1), the linear Dirac
equation gives plane waves solutions. The probability density fluctuates in a sinusoidal fashion. Plane
wave solutions are physically meaningful. Addition of torsion, however, as we saw, makes this solution
unphysical. For (w=-2), we have plotted this solution in fig (5).

• Case 2: w = ±1 (trivial case)

Ã(z) = 0 B̃(z) = 0 j̃0 = 0 (128)

• Case 3: w ∈ (−1, 0)

Ã(z) = i(1 + w)

√
(1 + |w|) cosh(p

√
1− w2)

(1− |w| cosh(2p
√

1− w2)
(129)

B̃(z) = i(1− w)

√
(1− |w|) sinh(p

√
1− w2)

(1− |w| cosh(2p
√

1− w2)
(130)

a

4b
j0 = j̃0 =

[
(w + 1)2(|w|+ 1) cosh2(p

√
1− w2) + (1− w)2(1− |w|) sinh2(p

√
1− w2)

(1− |w| cosh(2p
√

1− w2)2

]
(131)

Comments on case 3 : This solution has two singularities placed symmetrically opposite w.r.t origin on
two finite non-zero values of ‘p’. It dies down to zero at infinity. However, owing to the presence of
singularities, it is an unphysical solution. A specimen of this case with (w=-0.5) has been plotted in the
left column of fig (2)

Contrasting case 3 with linear (non-torsion) Dirac equation: For w ∈ (−1, 0), the linear Dirac equation
has unphysical solutions. The solutions exponentially increase to infinity as ‘p’ go to ±∞. For, w=-0.5,
we have plotted this solution in fig (5). So for case 3, we conclude that both linear (non-torsional) and
non-linear (with torsion) Dirac equation give unphysical solutions.
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• Case 4: w = 0

Ã(z) = i cosh(p), B̃(z) = i sinh(p), j̃0 =

[
cosh2(p) + sinh2(p)

]
(132)

Comments on case 4 : This solution exponentially blows up at p = ±∞. Hence, it is clearly unphysical
solution. A specimen of this case with (w=0) has been plotted in the right column of fig (2)

Contrasting case 4 with linear (non-torsion) Dirac equation: For w = 0, the linear Dirac equation is
unphysical. The solutions exponentially increase to infinity as ‘p’ go to +∞. For, w=0, we have plotted
this solution in fig (5). So for case 4, we conclude that both linear (non-torsional) and non-linear (with
torsion) Dirac equation give unphysical solutions.

• Case 5: w ∈ (0, 1)

Ã(z) = i(1 + w)

√
(1− w) cosh(p

√
1− w2)

(1 + w cosh(2p
√

1− w2))
(133)

B̃(z) = i(1− w)

√
(1 + w) sinh(p

√
1− w2)

(1 + w cosh(2p
√

1− w2))
(134)

a

4b
j0 = j̃0 =

[
(1 + w)2(1− w) cosh2(p

√
1− w2) + (1− w)2(1 + w) sinh2(p

√
1− w2)

(1 + w cosh(2p
√

1− w2))2

]
(135)

Comments on case 5 : In this case, we have no singularities anywhere. All the functions (including
probability density) are asymptotically vanishing. So, It represents a physically plausible solution. De-
pending on the exact nature of solution, we classify this case into two sub-cases:
1) Case 5(a): w ∈ (0, 1

3)
2) Case 5(b): w ∈ [1

3 , 1)

Case 5(a) has a local minima at the origin and has two global maximas on the two symmetrically
opposite sides of origin at non-zero p’s. Specimen of this case is shown in figure (3) with a blue plot.
Case 5(b) has global maxima at origin and it monotonically decreases to zero at infinity. Two specimens
of this case are shown in figure (3) with a orange and green plot. case 5(b) is like a ’blob’ solution. We
will comment more about this in ‘discussions’.

Contrasting case 5 with linear (non-torsion) Dirac equation: For w ∈ (0, 1), linear Dirac equation
gives unphysical solution. The solutions exponentially increase to infinity as ‘p’ go to ±∞. For, w=0.5,
we have plotted this solution in fig (5). Adding torsion in the picture, as we saw in this case, make the
solutions physically meaningful.

• Case 6: w ∈ (1,∞)

Ã(z) = −(1 + w)

√
(w − 1) cos(p

√
w2 − 1)

(1 + w cos(2p
√
w2 − 1)

(136)

B̃(z) = −(1− w)

√
(w + 1) sin(p

√
w2 − 1)

(1 + w cos(2p
√
w2 − 1)

(137)

a

4b
j0 = j̃0 =

[
(1 + w)2(w − 1) cos2(p

√
w2 − 1) + (1− w)2(w + 1) + sin2(p

√
w2 − 1)

(1 + w cos(2p
√
w2 − 1))2

]
(138)
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Figure 2: Plots for case [III] and case [IV]. The left column shows plots for case 3 with w=-0.5. The
right column shows plots for case 4 with w=0. Both the cases have unphysical solutions.

Comments on case 3 : This solution has infinite singularities placed periodically over non-zero values
of ‘p’. It is clearly unphysical. A specimen of this case with (w=2) has been plotted in the left column of
fig (4)

Contrasting case 3 with linear (non-torsion) Dirac equation: For w ∈ (1,∞), the linear Dirac equation
gives plane waves solutions. The probability density fluctuates in a sinusoidal fashion. Plane wave solu-
tions are physically meaningful. Addition of torsion, however, as we saw, makes this solution unphysical.
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Figure 3: Plots for Case [V]. In all plots: [Green: case 5(a) with w=0.75], [Orange: case 5(a) with
w=0.5], [Blue: case 5(b) with w=0.25]. Case 5(a) has global maxima at origin. Case 5(b) has local
minima at origin and two maximas at two symmetrically opposite sides of origin at non-zero p. Both
cases 5(a) and 5(b) are asymptotically vanishing.

For (w=2), we have plotted this solution in fig (5).
Following table summarizes all the cases:
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Figure 4: Plots for case [I] and case [VI]. The left column shows plots for case 1 with w=-2. The
right column shows plots for case 6 with w= +2. Both the cases have unphysical solutions.

Cases Solution(s) of linear (non-
torsional) Dirac eqn

Solution(s) of non-linear
Dirac eqn (with torsion)

Case I → Physical (Plane wave) Unphysical (having infinite
singularities)

Case II → Trivial solution Trivial solution

Case III → Unphysical (blows up expo-
nentially at infinity)

Unphysical, (has 2 singulari-
ties)

Case IV → Unphysical (blows up expo-
nentially at infinity)

Unphysical (blows up expo-
nentially at infinity)

Case V → Unphysical (blows up expo-
nentially at infinity)

Physical (No singularity)

Case VI → Physical (Plane wave) Unphysical (having infinite
singularities)
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Figure 5: Plots for solutions to linear (non-torsional) Dirac equation. Only plane wave solutions
(case 1,6) is physical. Rest all are unphysical.

6.2 Attempting plane wave solutions

We begin by substituting the following plane wave ansatz in (90 - 93) as follows:
F1

F2

G1

G2

 =


u0

u1

v̄0′

v̄1′

 eik.x (139)

With this ansatz, ξ and ξ∗ are as follows:
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ξ = uAv̄A′ (140)

ξ∗ = ūA
′
vA (141)

We assume ξ to be a real constant such that ξ = uAv̄A′ = ūA
′
vA = ξ∗ = (real constant ξ). Putting

the above ansatz in (90 - 93), we obtain:

(k0 + k3)u0 + (k1 + ik2)u1 − µ(ξ)v̄0′ = 0 (142)

(k0 − k3)u1 + (k1 − ik2)u0 − µ(ξ)v̄1′ = 0 (143)

(k0 + k3)v̄1′ − (k1 − ik2)v̄0′ − µ(ξ)u1 = 0 (144)

(k0 − k3)v̄0′ − (k1 + ik2)v̄1′ − µ(ξ)u0 = 0 (145)

where µ(ξ) =
√

2(b+aξ). Note µ is a function of ξ which remains a undetermined quantity before finding
a complete solution. We have to just make sure that ξ is a real constant.

(k0 + k3) (k1 + ik2) −µ(ξ) 0
(k1 − ik2) (k0 − k3) 0 −µ(ξ)

0 −µ(ξ) −(k1 − ik2) (k0 + k3)
−µ(ξ) 0 (k0 − k3) −(k1 + ik2)



u0

u1

v̄0′

v̄1′

 =


0
0
0
0

 (146)

We first assume k1 = k2 = k3 = 0 (This is like attempting a solution in a rest frame). The above
equation reduces to 

k0 0 −µ(ξ) 0
0 k0 0 −µ(ξ)
0 −µ(ξ) 0 k0

−µ(ξ) 0 k0 0



u0

u1

v̄0′

v̄1′

 =


0
0
0
0

 (147)

For the above system to have solution, we must have det(coefficient matrix in 24) = 0. This gives

⇒[k2
0 − µ(ξ)2]2 = 0

⇒k0 = ±µ(ξ)

6.2.1 Two cases for the plane wave solution(s)

Case I: k0 = +µ(ξ): the general solution is of the form:
F1

F2

G1

G2

 =
α1√
V


0
1
0
1

 eiµ(ξ)x0 +
β1√
V


1
0
1
0

 eiµ(ξ)x0 (148)

where |α1|2 + |β1|2 = 1 is the normalization condition.
Here, ξ and µ are as follows:

ξ =
|α2|2 + |β2|2

V
=

1

V

µ =
√

2

(
b+

a

V

)
Case II: k0 = −µ(ξ), general solution is of the form:
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
F1

F2

G1

G2

 =
α2√
V


0
−1
0
1

 e−iµ(ξ)x0 +
β2√
V


−1
0
1
0

 e−iµ(ξ)x0 (149)

where, |α2|2 + |β2|2 = 1 is the normalization condition
Here ξ and µ are as follows:

ξ =
−|α2|2 − |β2|2

V
=
−1

V

µ =
√

2

(
b− a

V

)
What of the tensor (T − S)µν? After explicit calculation (ref. Appendix C), we find that even in this

case, T − S never goes to zero for non-vanishing torsion.

6.3 Solution by reduction to (2+1) Dim in cylindrical coordinates (t,r,φ)

After assuming ∂z = 0, the HD equations in cylindrical coordinates [94 - 97] are as follows:

r∂tF1 + cr∂rF2e
iφ + ic∂φF2e

iφF1 = icr
√

2(b+ aξ)G1 (150)

r∂tF2 + cr∂rF1e
−iφ − ic∂φF1e

−iφ = icr
√

2(b+ aξ)G2 (151)

r∂tG2 − cr∂rG1e
−iφ + ic∂φG1e

−iφ = icr
√

2(b+ aξ∗)F2 (152)

r∂tG1 − cr∂rG2e
iφ − ic∂φG2e

iφ = icr
√

2(b+ aξ∗)F1 (153)

We now take the ansatz, F2 = G2 and F1 = −G1

r∂tF1 + r∂rF2e
iφ + i∂φF2e

iφ = −ir
√

2(b+ aξ)F1 (154)

r∂tF2 + r∂rF1e
−iφ − i∂φF1e

−iφ = ir
√

2(b+ aξ)F2 (155)

We choose following ansatz in the above equation

[
F1

F2

]
=

[
iA(r)e

iφ
2

B(r)e
−iφ
2

]
e−iωt (156)

Putting this ansatz in above equations, we obtain the 2 differential equations as follows:

−rBω + r∂rA+
A

2
= r
√

2[b+ a(B2 −A2)]B (157)

rAω + r∂rB +
B

2
= r
√

2[b+ a(B2 −A2)]A (158)

We add and subtract the two equations above and make the following substitution:

ψ1 = B(r) +A(r) (159)

ψ2 = B(r)−A(r) (160)

To obtain:
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−rωψ2 + rψ′1 +
ψ1

2
− r
√

2(b+ aψ1ψ2)ψ1 = 0 (161)

rωψ1 + rψ′2 +
ψ2

2
+ r
√

2(b+ aψ1ψ2)ψ2 = 0 (162)

With ω = 0, we have the solutions:

ψ1 =

[
c2e
√

2br

r

(
1−2
√
2ac1

2

) ] ψ2 =

[
c1e
−
√

2brr

(
−1−2

√
2ac1

2

)
c2

]
(163)

This is clearly unphysical because ψ1 blows up ∀ non-zero c2; and making c2 zero blows up ψ2. So,
we conclude that, static solution to the above system of equation is unphysical. So ω can’t be zero. Some
further attempts to solve it numerically are in progress.

6.4 Solution by reduction to (3+1) Dim in spherical coordinates (t,r,θ,φ)

We begin by putting following ansatz in HD equations with spherical coordinates:
F1

F2

G1

G2

 =


R− 1

2
(r)S− 1

2
(θ)e+iφ/2

R+ 1
2
(r)S+ 1

2
(θ)e−iφ/2

R+ 1
2
(r)S− 1

2
(θ)e+iφ/2

R− 1
2
(r)S+ 1

2
(θ)e−iφ/2

 e−iωt (164)

With this ansatz, (98) - (101) become:

(
− iωR− 1

2
S− 1

2
+ cos θR′− 1

2

S− 1
2
− sin θ

r
R− 1

2
S′− 1

2

+
1

2r sin θ
R+ 1

2
S+ 1

2
+ sin θR′

+ 1
2

S+ 1
2

+
cos θ

r
R+ 1

2
S′

+ 1
2

)
= i
√

2(b+ aξ)R+ 1
2
S− 1

2

(165)(
− iωR+ 1

2
S+ 1

2
− cos θR′

+ 1
2

S+ 1
2

+
sin θ

r
R+ 1

2
S′

+ 1
2

− 1

2r sin θ
R− 1

2
S− 1

2
+ sin θR′− 1

2

S− 1
2

+
cos θ

r
R− 1

2
S− 1

2

)′
= i
√

2(b+ aξ)R− 1
2
(r)S+ 1

2
(θ)

(166)(
− iωR− 1

2
S+ 1

2
+ cos θR′− 1

2

S+ 1
2
− sin θ

r
R− 1

2
S′

+ 1
2

+
1

2r sin θ
R+ 1

2
S− 1

2
− sin θR′

+ 1
2

S− 1
2
− cos θ

r
R+ 1

2
S′− 1

2

)
= i
√

2(b+ aξ∗)R+ 1
2
(r)S+ 1

2
(θ)

(167)(
− iωR+ 1

2
(r)S− 1

2
(θ)− cos θR′

+ 1
2

S− 1
2

+
sin θ

r
R+ 1

2
S′− 1

2

− 1

2r sin θ
R− 1

2
S+ 1

2
− sin θR′− 1

2

S+ 1
2
− cos θ

r
R− 1

2
S′

+ 1
2

)
= i
√

2(b+ aξ∗)R− 1
2
S− 1

2

(168)

Where

ξ = R− 1
2
S− 1

2
R̄+ 1

2
S̄− 1

2
+R+ 1

2
S+ 1

2
R̄− 1

2
S̄− 1

2
(169)

ξ∗ = R̄− 1
2
S̄− 1

2
R+ 1

2
S− 1

2
+ R̄+ 1

2
S̄+ 1

2
R− 1

2
S− 1

2
(170)
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7 Discussion and outlook

In this paper, we formulated ECD theory in the NP formalism. The Dirac equation is carried to
U4 and presented (in NP) in (78 - 81). We have also provided a prescription for finding the covariant
derivative on U4, thereby allowing one to calculate objects like the generic EM tensor on U4 etc. We
have calculated the spin density term which acts as a correction to the dynamic (and symmetrical) EM
tensor; the two of which contribute together to the Einstein tensor (made up of Christoffel connections).
In addition, the contorsion spin coefficients in the NP formalism are also expressed in terms of the Dirac
state.

We attempted finding solutions to HD equations on Minkowski space with torsion. Solutions after
reducing the problem to (1+1) dimension in the variables (t, z) were found. This solution vanishes at
infinity in the non-static case. However, static case is unphysical. We notice that, there is a singularity at
finite z for positive energy solutions. In the case of vanishing torsion (where a = 0), a singularity exists
at z = 0. It is interesting to notice that the addition of torsion shifts the singularity away from zero.
Moreover, as the coupling length scale l decreases, the singularity shifts further away from zero, and never
reaches zero for finite l. For negative energy solutions, there is no singularity and the function is physical
as well as well-behaved – for any finite l, the solution is non-singular at zero.

Plane wave solutions were found in section (6.2). Next, we attempted finding solutions by reducing
the problem to (2+1) dimensions in cylindrical coordinates with variables (t, r, φ). Static solutions to this
were also found to be unphysical. However, Finding non-static solutions to (2+1) case (given in section
6.3) and the (3+1) case (given in section 6.4) is still under progress.
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8 Appendices

8.1 Appendix A: Contorsion tensor (Kµνα) components

Our aim is to write the contorsion tensor (Kµνα) in the NP formalism eventually in terms of spinor
components, with the contorsion tensor given by:

Kµνα = −kSµνα = 2iπl2ψ̄γ[µγνγα]ψ (171)

Note, only four independent components of this tensor is excited by the Dirac field. Writing explicitly
in the NP formalism, i.e., null tetrad basis, we have:

K(i)(j)(k) = e(i)µe(j)νe(k)αK
µνα (172)

where e(i)µ = (lµ, nµ,mµ, m̄µ) for i = 1, 2, 3, 4 First, we consider the product γαγβγµ, defined as follows:

γαγβγµ =

(
0 (σ̃α)∗(σβ)∗(σ̃µ)∗

(σα)∗(σ̃β)∗(σµ)∗ 0

)
= 2
√

2

(
02×2 K01

K10 02×2

)
(173)

where, explicitly, expanding out the Van der Waarden symbols, we have:

K01 =

[
+nln− nm̄m− m̄mn+ m̄nm −nlm̄+ nm̄l + m̄mm̄− m̄nl
−mln+mm̄m+ lmn− lnm +mlm̄−mm̄l − lmm̄+ lnl

]αβµ
(174)

K10 =

[
+lnl − lm̄m− m̄ml + m̄lm +lnm̄− lm̄n− m̄mm̄+ m̄ln

+mnl −mm̄m− nml + nlm +mnm̄−mm̄n− nmm̄+ nln

]αβµ
(175)

With the expression for γαγβγµ, we can now define the world components of K. Next, we use (172) to
calculate the contorsion spin coefficients[14] in the NP (null tetrad) basis. An an example, the solution
for ρ1 is given as:

ρ1 = −K(1)(3)(4) = −lµmνm̄αK
µνα = −2iπl2[lµmνm̄α]ψ̄γ[µγνγα]ψ (176)

The only quantity giving a non-zero scalar product when contracted with lµmνm̄α is nµm̄νmα and cor-
responding permutations (given the definition of γ[µγνγα]), giving lµmνm̄αn

µm̄νmα = 1. Thus:

[lµmνm̄α]ψ̄γ[µγνγα]ψ =

√
2

3
ψ̄

([
0 0 –1 0
0 0 0 0
0 0 0 0
0 0 0 0

]
−
[

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

]
+

[
0 0 –1 0
0 0 0 0
0 0 0 0
0 0 0 0

]
−
[

0 0 0 0
0 0 0 0
0 0 0 0
0 0 –1 0

]
+

[
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

]
−
[

0 0 0 0
0 0 0 0
0 0 0 0
0 –1 0 0

])

=

√
2

3

(
Q0 Q1 P̄ 0′ P̄ 1′

)
0 0 –3 0
0 0 0 0
0 0 0 0
0 3 0 0



P 0

P 1

Q̄0′

Q̄1′


=
√

2(P̄ 1′P 1 −Q1Q̄1′)

This gives the full expression for ρ (redefining the spinor components as prescribed):

ρ = −K(1)(3)(4) = −2
√

2iπl2[F2F̄2 −G1Ḡ1] (177)

and similarly for the other spin coefficients.
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8.2 Appendix B: The Dirac equation in U4

The Dirac equation in U4 (the Hehl-Datta equation) is given, in matrix form, as:

i

(
0 (σ̃µ)∗

(σµ)∗ 0

)
∇µ
(
PA

Q̄B′

)
=

1

2
√

2l

(
PA

Q̄B′

)
(178)

Rewriting as a pair of matrix equations:(
σµ00′ σµ10′

σµ01′ σµ11′

)
∇µ
(
P 0

P 1

)
+

i

2
√

2l

(
−Q̄1′

Q̄0′

)
= 0 (179)(

σµ11′ −σµ10′

−σµ01′ σµ00′

)
∇µ
(
−Q̄1′

Q̄0′

)
+

i

2
√

2l

(
P 0

P 1

)
= 0 (180)

We will proceed to work through a solution for the first and third equation generated by this pair; the
second and fourth follow along similar lines.

Equation 1 :

i

2
√

2l
Q̄1′ = σµ00′∇µP

0 + σµ10′∇µP
1

= (∂00′P
0 + Γ0

i00′P
i) + (∂10′P

1 + Γ1
i10′P

i)

= (D + Γ0
000′P

0 + Γ0
100′P

1) + (δ∗ + Γ1
010′P

0 + Γ1
110′P

1)

= (D + Γ1000′ − Γ0010′)P
0 + (δ∗ + Γ1100′ − Γ0110′)P

1

= (D + εo + ε1 − ρo − ρ1)P 0 + (δ∗ + πo + π1 − αo − α1)P 1

= (D + ε0 − ρ0)P 0 + (δ∗ + π0 − α0)P 1 +
3

2
(π1P

1 − ρ1P
0)

(181)

Equation 3 :

i

2
√

2l
P 0 = −σµ11′∇µQ̄

1′ − σµ10′∇µQ̄
0′ +

i

2
√

2l
P 0

= −σ̄µ11′∇µQ̄
1′ − σ̄µ0′1∇µQ̄

0′ +
i

2
√

2l
P 0

= (∂11′Q̄
1′ + Γ̄1′

i′1′1Q̄
i′) + (∂10′Q̄

0′ + Γ̄0′
i′0′1Q̄

i′)

= (∆Q̄1′ + Γ̄1′
0′1′1Q̄

0′ + Γ̄1′
1′1′1Q̄

1′) + (δ∗Q̄0′ + Γ̄0′
0′0′1Q̄

0′ + Γ̄0′
1′0′1Q̄

1′)

= (∆ + Γ̄1′1′0′1 − Γ̄0′1′1′1)Q̄1′ + (δ∗ + Γ̄1′0′0′1 − Γ̄0′0′1′1)Q̄0′

= (∆ + µo + µ1 − γo − γ1)Q̄1′ + (δ∗ + βo + β1 − τ o − τ1)Q̄0′

= (∆ + µ∗0 − γ∗0)Q̄1′ − (δ∗ + β∗0 − τ∗0 )Q̄0′ − 3

2
(µ1Q̄

1′ − π1Q̄
0′)

(182)

where we have used the gamma matrices as defined in (46), computed the covariant derivatives using
(48), (49) and the spin connections in terms of contorsion spin coefficients as given in (64). Using this
procedure, the four Dirac equations in U4 are obtained as:

(D + ε0 − ρ0)F1 + (δ∗ + π0 − α0)F2 +
3

2
(π1F2 − ρ1F1) = ib(l)G1 (183)

(∆ + µ0 − γ0)F2 + (δ + β0 − τ0)F1 +
3

2
(µ1F2 − τ1F1) = ib(l)G2 (184)

(D + ε∗0 − ρ∗0)G2 − (δ + π∗0 − α∗0)G1 −
3

2
(τ1G1 − ρ1G2) = ib(l)F2 (185)

(∆ + µ∗0 − γ∗0)G1 − (δ∗ + β∗0 − τ∗0 )G2 −
3

2
(µ1G1 − π1G2) = ib(l)F1 (186)
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where we have also redefined {P,Q} → {F,G}, as per the substitution in (1) and to obtain a form that
can be consistently compared with the primary source material in [6] (eqn. 108).

8.3 Appendix C: Calculating (T − S)µν
In theories which consider a balance between the Riemannian and torsional curvatures (such as in

[11], the tensor (T − S)µν is of paramount importance. Vanishing (T − S)µν would take the form of a
‘balance condition’, and represent a space with nonzero Riemannian curvature and torsion, but where the
two exactly cancel each other out. The (T − S)µν tensor is defined as:

(T − S)µν = Tµν −
4πl2

~c
ηµνS

αβλSαβλ (187)

This tensor has 10 components. The 6 off-diagonal components are as follows:

(T − S)21 =
i~c
4

(
F̄1∂1F1 + F̄2∂1F2 + Ḡ1∂1G1 + Ḡ2∂1G2 − F̄2∂0F1 − F̄1∂0F2 + Ḡ2∂0G1 + Ḡ1∂0G2

− ∂1F̄1F1 − ∂1F̄2F2 − ∂1Ḡ1G1 − ∂1Ḡ2G2 + ∂0F̄2F1 + ∂0F̄1F2 − ∂0Ḡ2G1 − ∂0Ḡ1G2

)
(188)

(T − S)31 =
i~c
4

(
F̄1∂2F1 + F̄2∂2F2 + Ḡ1∂2G1 + Ḡ2∂2G2 + iF̄2∂0F1 − iF̄1∂0F2 − iḠ2∂0G1 + iḠ1∂0G2

− ∂2F̄1F1 − ∂2F̄2F2 −G1∂2Ḡ1 − ∂2Ḡ2G2 − i∂0F̄2F1 + i∂0F̄1F2 + i∂0Ḡ2G1 − i∂0Ḡ1G2

)
(189)

(T − S)41 =
i~c
4

(
F̄1∂3F1 + F̄2∂3F2 + Ḡ1∂3G1 + Ḡ2∂3G2 − F̄1∂0F1 + F̄2∂0F2 + Ḡ1∂0G1 − Ḡ2∂0G2

− ∂3F̄1F1 − ∂3F̄2F2 − ∂3Ḡ1G1 − ∂3Ḡ2G2 + ∂0F̄1F1 − ∂0F̄2F2 − ∂0Ḡ1G1 + ∂0Ḡ2G2

)
(190)

(T − S)32 =
i~c
4

(
iF̄2∂1F1 − iF̄1∂1F2 − iḠ2∂1G1 + iḠ1∂1G2 − F̄2∂2F1 − F̄1∂2F2 + Ḡ2∂2G1 + Ḡ1∂2G2

− i∂1F̄2F1 + i∂1F̄1F2 + i∂1Ḡ2G1 − i∂1Ḡ1G2 + ∂2F̄2F1 + ∂2F̄1F2 − ∂2Ḡ2G1 − ∂2Ḡ1G2

)
(191)

(T − S)42 =
i~c
4

(
− F̄1∂1F1 + F̄2∂1F2 + Ḡ1∂1G1 − Ḡ2∂1G2 − F̄2∂3F1 − F̄1∂3F2 + Ḡ2∂3G1 + Ḡ1∂3G2

+ ∂1F̄1F1 − ∂1F̄2F2 − ∂1Ḡ1G1 + ∂1Ḡ2G2 + ∂3F̄2F1 + ∂3F̄1F2 − ∂3Ḡ2G1 − ∂3Ḡ1G2

)
(192)

(T − S)43({}) =
i~c
4

(
− F̄1∂2F1 + F̄2∂2F2 + Ḡ1∂2G1 − Ḡ2∂2G2 + iF̄2∂3F1 − iF̄1∂3F2 − iḠ2∂3G1 + iḠ1∂3G2

+ ∂2F̄1F1 − ∂2F̄2F2 − ∂2Ḡ1G1 + ∂2Ḡ2G2 − i∂3F̄2F1 + i∂3F̄1F2 + i∂3Ḡ2G1 − i∂3Ḡ1G2

)
(193)
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The diagonal components are as follows:

(T − S)11 =
i~c
2

(
Ḡ1∂0G1 + Ḡ2∂0G2 − ∂0Ḡ1G1 − ∂0Ḡ2G2 + F̄1∂0F1 + F̄2∂0F2 − ∂0F̄1F1 − ∂0F̄2F2

)
− 6π~cl2ξξ∗

(194)

(T − S)22 =
i~c
2

(
− F̄2∂1F1 − F̄1∂1F2 + Ḡ2∂1G1 + Ḡ1∂1G2 + ∂1F̄2F1 + ∂1F̄1F2 − ∂1Ḡ2G1 − ∂1Ḡ1G2

)
+ 6π~cl2ξξ∗

(195)

(T − S)33 =
i~c
2

(
iF̄2∂2F1 − iF̄1∂2F2 − iḠ2∂2G1 + iḠ1∂2G2 − i∂2F̄2F1 + i∂2F̄1F2 + i∂2Ḡ2G1 − i∂2Ḡ1G2

)
+ 6π~cl2ξξ∗

(196)

(T − S)44 =
i~c
2

(
− F̄1∂3F1 + F̄2∂3F2 + Ḡ1∂3G1 − Ḡ2∂3G2 + ∂3F̄1F1 − ∂3F̄2F2 − ∂3Ḡ1G1 + ∂3Ḡ2G2

)
+ 6π~cl2ξξ∗

(197)

We can now calculate this tensor for the various solutions to the HD equations on Minkowski space
with torsion, to probe the feasibility of this balance condition.

(T − S)µν for non-static Solution 1+1 dimension (t,z)

(T−S)µν = ~c



(
Λ[A2 +B2]− a[A2−B2]2

2
√

2

)
0 −ΛAB 0

0

(
a[A2−B2]2

2
√

2

)
0 0

−ΛAB 0

(
a[A2−B2]2

2
√

2

)
0

0 0 0

(
[AB′ −BA′] + a[A2−B2]2

2
√

2

)


(198)

Λ is a free parameter in the solution. We will analyze this tensor ”T-S” for various types of values of
Λ.

(T − S)µν for Plane wave solutions

For case I:

35



(T − S)µν = ~c



−
(
V+18πl3

V 2l

)
0 0 0

0

(
6πl2

V 2

)
0 0

0 0

(
6πl2

V 2

)
0

0 0 0

(
6πl2

V 2

)


(199)

For case II

(T − S)µν = ~c



−
(
V−18πl3

V 2l

)
0 0 0

0

(
6πl2

V 2

)
0 0

0 0

(
6πl2

V 2

)
0

0 0 0

(
6πl2

V 2

)


(200)

Comments:

We observe that for both cases that (T − S)µν goes to zero only when V −→ ∞. But V going to ∞
implies ξ going to zero. So in case of vanishing torsion only, (T − S) has any hopes of becoming zero.
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