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Abstract

We present various solution generating algorithms for spacetimes with a Killing field
using dimensional reduction. In particular, we discuss Geroch’s algorithm in Ricci-flat
spacetime and its extension to Einstein spaces (locally anti-de Sitter), where only a sub-
group of the original SL(2,R) Ehlers-Geroch group generates new solutions. This sub-
group does not contain the celebrated Schwarzschild-TaubNUT-AdS solution, which is
known to exist. Holography provides an alternative “dimensionally reduced” solution gen-
erating algorithm which contains this missing subgroup, dubbed U-duality group. This
motivated us to study the holographic dual of the Geroch group and we present here our
attempts to do this for the Ricci-flat spacetimes (in future, we would also like to do the
same for the AdS case and compare the dual with already found U-duality group).
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Introduction

Einstein’s field equations, are a set of coupled non-linear partial differential equations
and finding exact solutions to these is a very difficult task. Most known exact solutions
heavily rely on symmetries of the spacetime and the only physically interesting ones that
we know are perfect fluids, electrovacuum, scalar field or point mass solutions (and their
combinations). Studying and finding exact solutions is crucial as even the ‘nonphysical’
exact solutions like Taub-NUT have been known to provide valuable references to compare
approximate or numerical results to check the validity of approximation techniques [1, 2|
(see section 1.3 for an example). This is why solution generating techniques like the ones
developed by Ehlers [3] are so crucial.

In his seminal papers in 1970 [4, 5|, Geroch generalized Ehlers’ algorithm [6, 7] for
generating vacuum solutions of Einstein’s equations in Ricci-flat spacetimes with a Killing
field. Given a Riemannian manifold M with a Ricci flat metric g possessing Killing
direction &, there exists a one-to-one correspondence between (M, g,¢) and (S, h, A\, w),
where A\ and w are the norm and scalar twist of the Killing field £ and h is the metric
on &, which is generated by quotienting M by the orbits of £. It was then shown that
the dynamics of g on M is equivalent to the dynamics of (h, A\,w) in a 3d sigma model.
This sigma model is invariant under SL(2,R) transformations, which can be used to find
a new triplet (A, \',w’) that obey the same dynamical equations. These triplets can then
be promoted to find new four-dimensional vacuum solutions ¢’ with one Killing field ¢’
An example of this is Schwarzschild to Taub-NUT which is outlined in section 1.3.

In [8, 9], this technique was extended to Einstein spaces with non-vanishing cosmo-
logical constant. It was shown that in this case, only a subgroup of SL(2,R) generates
new solutions. Unfortunately, this extension could not answer if it is possible to get
Taub-NUT-AdS from Schwarzschild-AdS using this Geroch-like process, both of which
are known to exist independently. In a separate study in [10], it was shown that a holog-
raphy based solution generating algorithm contains this missing subgroup for the AdS
case. This motivates us to ask: 1. How is this holographic solution generating algorithm
related to the holographic duals of (M, g) and (M, g")? Can holography also explain why
the algorithm generated in [10] failed to account for the complete Geroch group, i.e., does
holography have a handle over the hidden symmetries of the bulk? and 2. Can holography
provide new insights for the Ricci-flat case too?

The goal of this report is to pave the way to answering these two questions. In [9-
13|, it was observed that a derivative expansion gauge like the one used for fluid/gravity
correspondence is better suited for the task at hand since the bulk metric can be written
in a closed-form. Derivative expansion also admits a consistent zero-cosmological constant
limit. Indeed, in [14-16] it was also shown that for flat spacetimes, the zero-cosmological
limit in the bulk corresponds to “Carrollian” limit on the boundary, where Carrollian
algebra is the vanishing speed of light contraction of the Poincare algebra (as opposed to
the Galilean algebra which is infinite speed of light contraction of Poincare algebra).

In this report, I will first review Geroch’s algorithm and demonstrate its use through
an example in chapter 1. In chapter 2, I will outline the procedure that was proposed
in [8] to extend Geroch’s algorithm to AdS and check its range of validity. Chapter 3
will deal with the holographic solution generating algorithm of [10] which contains the
missing subgroup and apply it to the most general family of Petrov type-D solutions,
the Plebanski-Demianski Einstein spaces. Chapter 4 will deal with flat holography where
in section 4.3 we outline our attempts to find the Geroch dual. Appendices A to I will
provide complimentary material and examples for interested readers.



Chapter 1

(Geroch in Ricci flat spaces

In this chapter we briefly review the original Geroch’s solution generating algorithm for
Ricci flat spacetimes of [4, 5]. We demonstrate it through an example by generating Taub-
NUT solution, starting from the Schwarzschild solution. The appendix of [4] provides a
very neat complementary reading on the contents of this chapter.

1.1 From 4D to 3D and back

Consider a Ricci flat vacuum solution of Einstein’s equations (M, g) with a Killing
field £* that is everywhere spacelike or timelike. We define its norm and twist as

A =8,
W, = 6abcdgbvcgd = _225 *3 df,

(1.1)

where i¢ represents contraction with § and %7 is the n-dimensional Hodge duality! with
respect to metric g. For Ricci-flat spacetimes?, we locally define scalar twist w, as

w, = dw. (1.2)

Since the metric ¢ admits a Killing vector, one can define the “quotient” of M with
respect to the action of one-parameter group generated by £ as a three dimensional space
S. Because there exists a one-to-one correspondence between tensor fields on & and
certain tensor fields on M?, we can equip & with a manifold structure, with metric h

defined as
gagb

A
Using this one-to-one correspondence, dynamics of Einstein’s equations in presence of a
Killing vector in (M, g) can be recast in terms of dynamics of (h,w, A) on S, i.e.,

hab = Gab — . (13)

Rap = —2(7 — 7) "' D(u7Dy 7,

- O 1.4
D*r =2(1 — ) 'D,, 7D, Th™", (14

where 7 = w+i) and D and 7~2ab are the Levi-Civita covariant derivative and Ricci tensor

with respect to hg = Mgy, Equation (1.4) in principle provides new solutions (h',w’, \')

such that we can define a new four dimensional metric ¢’ on M with Killing vector ¢’ = n\’
(normalized such that ign = 1) as

§abh
N

'Hodge star operator on n-dimensional manifold maps a p-form to (n-p) form

Jop = Py + (1.5)

vy
<A s opin—p = p|17 pm--unprVl-»Vp

where 1. = /= 9€u ps...
2Using Cartan’s structure equations, xd x d = 2i¢ Ric, where Ric stands for Ricci tensor. Hence for

Ricci-flat spacetimes *d€ is a closed form (and hence locally exact)
31t was shown in [4] that the entire tensor algebra on S is completely and uniquely mirrored by tensors
fields T on M which satisfy i¢T = 0 and LT = 0. See appendix of [4] for more details.
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Here we have defined 7 using the fact that for a curl free skew field F” on S, equations
(1.4) imply that the pull back Fy;, on M is closed, i.e.,

1
F(ib = W ‘ki/ dw' = dT]/ (16)

1.2 Group structure

The equations (1.4) are invariant under SL(2,R) transformations, i.e., under

at +b
et +d’

where the a,b, c,d € R satisfy ad — bc = 1. This is what is usally refer to as the Geroch
group? This invariance allows us to construct new solutions on S, (1, 7") from an initial so-
lution (h, 7). However, not all transformations lead to new solutions. Indeed, transforma-
tions with ¢ = 0 only leads to conformal rescalings hl,, = d*hgp, N = d*\,w’ = d~(aw+D)
and are related to diffeomorphisms on M.

T T =

(1.7)

In section 2.1, we will show that the dynamical equations (1.4) for pure Einstein gravity
correspond to a non-linear o-model with a non-compact symmetric space SL(2,R)/SO(1,1).
The non-trivial transformations in (1.7), i.e., (h’,7") — (h, 7) then corresponds to trans-
forming the sigma-model structure from SL(2,R)/SO(1,1) to SL(2,R)/SO(2) [17|. For
the Schwarzschild to TaubNUT case discussed in the next section, these non-trivial
transformations correspond to rotation in the mass, m and NUT parameter, n plane:
pAtiv — e X (u+iv).

1.3 Schwarzschild and Taub-NUT geometries

To demonstrate the power of this technique, we will work out how one can get Taub-
NUT geometries from Schwarzschild geometries. A brief overview of Taub-NUT geome-
tries can be found in Appendix A. Starting with the Schwarzschild geometry,

-1
g:—(1—g)dt®dt+(1—g) dr @ dr 412 (d0 ® d +sin20 dp @ dg) ,  (1.8)

and choose £* to be the timelike Killing vector 9y, i.e., & = (1,0,0,0). We use equation
(1.1) to find the norm and scalar twist of this Killing field as:

A:gtt:_<1_ﬁ>a

r (1.9)
w = 0.
Using (1.3), the metric on S is given by
-1
h— (1-%) dr® dr + 2 (d6 ® 6 + sin® 6 dg © dg) . (1.10)

The form of (1.4) suggests that if we take /(= V&) to be equal to h(= Ah), then 7' is
related to 7 by an element of SL(2,R), through (1.7). Choosing to parametrize it as,

a b\ [ cosx siny (1.11)
c d)  \—siny cosy '

4The precise mathematical definition of the Geroch group is given in Appendix B.
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we get

N = A
cos? x + A2sin? y’
e sin x cos (1 — \?) (1.12)

cos? x + A2sin?y |
Iy = (cos® x + A?sin® x)hgp.

Finally using equation(1.6), we get that the field " is such that

Viany = (_)\—1,>3/2;~7/Cd€abcadwl~ (1.13)
This equation can be solved componentwise to give,
Vimy =0,
Vg =0,
Viny = —(_)\—1,)3/2”96\/—_}/89&}/ =0, (1.14)
Vil = (_A—ll)mh’”\/—_h’&w’,

where ¢ = (1,0, ¢) and €4, = \/%eabcdfd. Choosing an ansatz for 7/,
n, = (1,0,0,a(9)), (1.15)
such that i¢n’ = 1, and F is skew symmetric and substituting it in (1.14), we get
a(f) = —2p cos 6 sin 2. (1.16)

Hence the new metric ¢’ of equation (1.5) from Schwarzschild geometry is

)\/ )\/ )\/2

1 A
— ydr2 + yr2 (d92 + sin? 9d¢2) :

1 A A
¢ =Ndtedt — —dre@dr+ =r’dd @ d6 + X (Qadt + (—7’2 sin? 0 + a2) d(b) ® do,

= X (dt + ado)?
(1.17)

Clearly if we choose
sin2y = 2, (1.18)
i

then (1.17) is a Taub-NUT metric (A.1) with v as the NUT parameter. Hence, as we
claimed in section 1.2, the Geroch group rotates the NUT and the mass parameter by
an angle 2x. Through this easy example we have demonstrated the strength of Geroch’s
algorithm by generating Taub-NUT geometries starting from Schwarzschild metric. Also
as stated previously, not all Killing vectors £ lead to a new geometry. Indeed had we
chosen the spacelike Killing vector d, instead, we would have obtained a metric that was
diffeomorphic to Schwarzschild metric. In fact, only non-null Killings lead to non-trivial
solutions. To the best of my knowledge, there is no explanation available for this in the
literature. However, by the end of this report, we will be able to give a physical motivation
for why one should have expected this.

Our next goal is extend this algorithm to AdS spacetimes for Einstein spaces and to
understand holographic equivalent of this algorithm.
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Chapter 2
Geroch 1in AdS

In chapter 1 we insisted on working with new configurations (w’, N, h’) that keep B =h,
where h = Ah. However, for Einstein spaces® this restriction leads to the space of solutions
that cannot simultaneously accommodate Schwarzschild-AdS and Taub-NUT-AdS spaces
(see for example the last two paragraphs of section 2.2). In [8], the authors suggested
that this obstruction can be overcome by demanding that A’ is in the conformal class of
h, without any further restrictions. To work with the same machinery as chapter 1, the
authors introduced an extra scalar field x as the conformal factor and showed that the
dynamics of (k,w, ) is captured by a three-dimensional sigma model with target space
conformal to R X H,, where Hs is Lobatchevski plane. This dynamical scalar field is
useful for probing mini-superspace of solutions with a frozen reference metric.

In this chapter I will briefly introduce the Geroch group on AdS Einstein spacetimes
and outline the non-linear o-model structure of the reduced spacetime discussed in [8].
Finally we also discuss the issues of integrability with Geroch group on Einstein spaces
and introduce the holographic U-duality [9].

2.1 Dimensional reduction and Sigma model action

The power of Geroch’s algorithm lies in the observation that each given stationary,
axially symmetric solution is accompanied by an infinite family of potentials, which in turn
allowed for an infinite parameter set of infinitesimal transformations acting on the initial
solution [17]. Quite naturally the field equations for such stationary, axially symmetric
solutions of the 4-dimensional theory can be dimensionally reduced, which leads to non-
linear o-model for a non-compact symmetric space G/H [18]. Let us briefly outline why
this is the case as well as the field equations corresponding to the model:

Consider a non-linear o-model coupled to gravity, i.e., fields with values in target space
® with coordinates ¢’ and target metric 7;; over a spacetime manifold ¥ with coordinates
x® and metric g,s(x). The action and field equations for it are:

Su = [ Ve (~3R0) + 50" (0.6 (0)0:5(2)7(6(0)

Reop — 000" (2)0¢ ()75 (d(x)) = 0
D0y’ (z) =0

(2.1)

In the case when ® is the non-compact Riemannian symmetric space G/H, the sigma
model can be written as (see B.3),

Soym = [ Ve (=5 R() + 3 @) i) )

Raﬂ - (_$)<ja, jﬂ> =0,
DYJ, = 0.

'Reader is reminded that for Einstein spaces, Raqp X gab



where J = %M ~1OM is the current corresponding to the “metric” M?. For the Geroch
group, M can be chosen to be of the form of equation (C.4), with Kaluza-Klein fields
(A, wy).

It is worth mentioning that for Geroch group, the collection of effective transforma-
tions are SL(2,R)/N, where N represents gauge transformations (in terms of the three
dimensional Lorentz group, O(2,1), N is the subgroup of null rotations [4]). Unfortu-
nately N is not a normal subgroup of SL(2,R) and hence G/H is not a group and has no
natural group structure. This is why we had to impose an artificial group structure on it
in section 1.2 by choosing the representative to be of the form of equation (1.11), which
is only a subgroup of SL(2,R) and intersects each coset of N exactly once.

2.2 Extension of Geroch to AdS spacetimes

Assuming that h is some three-dimensional reference metric, the condition for A’ to
be in the same conformal class as h can be reformulated as
K ~
hab - Xhaba (23)
which allows k, a dilaton-like field that captures one of the degrees of freedom of h,
to remain dynamical together with the Kaluza-Klein vector and scalar fields (wq, ).
Equations (1.4), then read

N “ 1 PN ~ a o~
Rap = —2(1 = 7) ' DatDy7 + o (Dan/-@ n habDCDc/{>
K

K

haba

1 ~ ~ ~ ~ ~
= (SDamem n habDCchn> 4N
42 T—T (2.4)
D1t =2(1 — 7) ' DD, Th™ — Q—DmHDnThmn — 2iAk,
K
P = 2D kD, kh™ + — DD, 7 — GiA—— 4 2
4K (7' - T)2 T—T7T 2

These equations are the equivalent of field equations (2.2) if the three-dimensional
target space is treated as a sigma-model with the target space metric (B.3)

dr?  dw? +dN\?
dsfarget: V—FK (_ . + u )7

- = (2.5)

which is conformal to R X Hy (where Hj is Lobatchevski plane). The corresponding sigma
model action (2.2) is

- D*kD, DrD,7
S:—/d?’x\/;\/—/i< Tl o Tl LR — il ’ﬂ). (2.6)
S

K2 (t—7) T—7

Solving Einstein equations therefore is equivalent to studying the equations of motions of
particles with on three dimensional spacetime with metric (2.5), interacting with a scalar
potential with gravitational contributions v/—xR (since the metric h is frozen),

V=v_r (R - 2A§) . (2.7)

2See Appendix B for details



~ Let us now work with the simpler case when 5 is topologically R X S5 and the metric
h is chosen to have the form

. 22
h=dQedQ+ =di @ dr, (2.8)
K

where dQ? is necessarily a metric on Sy, Fy or Hy with R =2l forl =1,0,—1. We will later
show that this choice of (2.3), allows us to use this mini-superspace ansatz to explore the
entire space of solutions. The coordinate 7 here is chosen such that cosmological constant
appears in the Hamiltonian as just a constant potential and can be treated as a constant
of motion. Indeed, using the generalized momenta

1dk k2 dw k2 d\
Pr=3gi P Tag T T (2.9)
the Hamiltonian is
l@I:épQ—A—B(p2 +p2)+2lé—2/\ (2.10)
iR 92w LA K ’ '

The Geroch algebra (Killing fields obeying SL(2,R) group) is then realized in terms of
the following Poisson brackets®

{]:—,7 F—l—} - 07
{H>ﬁ2} = —I:I—2A, (2‘11)
- : PP,
{H,F_} =2wH + 4\ (w + —; .
K
where F+, Fy, and F_ are the following phase-space functions:
F—l— = Puw,
Fo= —2wApy — (W? — A)p, — 4Awi, (2.12)
FQ = WPy + )\p)\ -+ 2A7.

From (2.11) it is clear that for A = 0, all three dynamical functions F and F, are
conserved on the H = 0 surface. However, when A # 0, only F, and F} are conserved.
This corresponds to N C SL(2,R) of section 2.1. Upon solving the Hamilton-Jacobi
equations® for (2.10), one gets [8|

A
K=——,
2a
)= A
T 2a(r2 +n?)’ (2.13)
n 3lr — 3m — 4An?r
w=——|(Ar+ ,
3a r2 + n?2

3Poisson bracket is defined as {F,G} = o <E?TagTCi - gﬁ%) and 4€ = 9 4 {H,F}

4The reader is reminded that Hamilton-Jacobi equations

~ [0S oS
H o g + = — 0,
(aql K ) a7
are just a canonical transformation involving a type-2 generating function G(q, a;, ) = S(q, i, 7) + A,
where S is the principal solution and A is an arbitrary constant.
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where a plays the role of a normalization constant and n = p,/2v/2a. We have also
changed coordinates to r such that

1 3
F=— (r_ + rnz) . (2.14)

V2a \ 3
If we set 2, 2,
o= ”HT” (2.15)

then the 4 dimensional metric that is constructed from (2.13) following the procedure
outlined in section 1.1 turns out to be the Taub-NUT AdS metric (A.4) with (m,n) as
the mass and NUT charge and cosmological constant A.

We are now in a position where we can justify the need to explicitly consider the
dynamics of the scalar field x for AdS spacetime: For vanishing A of section 1.1, the
(m,n) dependence of the metric Ah (= kh by equation (2.3)) could be absorbed into a
single variable by a redefinition of the radial coordinate and x only depended on this
variable, i.e.,

2
o r—m
K sinh®o =1 (\/W) . (2.16)
Hence k is constant over the (m,n) parameter space under (1.11) and we could neglect
its dynamics. However, for non-vanishing A, neither m nor n could be eliminated from &
and we had to consider the full dynamics in (2.4), which ultimately lead to a potential
(2.7). This potential broke the symmetry group SL(2,R) down to a subgroup henceforth
called the U-duality group, and only this subgroup generates algebraically new solutions
a la Geroch.

2.3 U-Duality

The sigma-model described by (2.6) is in general not integrable because the SL(2,R)
group is not large enough to account for the infinite number of conserved charges that are
necessary for integrability |9, 17|. It however exhibits a continuous group of symmetries,
the U-duality group, which nonetheless allows one solution to be mapped to another.

However, because the solution generating group is only a subgroup of the SL(2,R), its
benefits for generating new solutions is limited. In particular, this group does not include
the generator m + in — e~*(m + in), where 6 is the angle of rotation in the parameter
space (m,n) in the sense of (1.11). It is unfortunate because Schwarzschild-TaubNUT
solutions exist on AdS and it is genuine to ask if there exists a map from Schwarzschild-
AdS solution to TaubNUT-AdS solution similar to the vacuum case of section 1.3 (we do
have similar transformations but all of them change A. Hence, for constant A, i.e., for
AdS this is not possible).

In conclusion, for the A # 0 case, Geroch’s algorithm is not sufficient to describe the
complete solution generating technique and integrability for Einstein solutions. Hence,
another approach is warranted. A possible candidate for this is provided by the gauge/
gravity correspondence, which is going to be the topic for chapter 3.



Chapter 3

Holographic solution generation

The AdS/CFT correspondence was built based on the existence of Fefferman-Graham
gauge, where the boundary data can be extended into the bulk. For a 4-dimensional bulk,
the boundary is endowed with a boundary metric (containing 6 degrees of freedom when
boundary is 3-dimensional) and a field theory symmetric-traceless stress-tensor (contain-
ing 5 degrees of freedom in 3-dimensions). These 5 degrees of freedom can be precisely
recast as b degrees of fluid data which will be described in details in chapter 4 and ap-
pendix E, F. In this chapter, we will show results that support the claim that holography
provides a new solution generating algorithm (these results will be “derived” in chapter
4). However, remember that the boundary data that we use in this solution generating
algorithm (a boundary metric and stress tensor) are apriori not related to bulk data which
are related by Geroch. Finding this relation is precicely one of the two questions that we
proposed in the introduction (also see figure 4.1 and 4.2).

3.1 From 4D to 3D and back again

Starting from the bulk Einstein space (M, ¢g), the holographic dictionary provides a
boundary space (B, gnary). The dictionary also states that fields in the bulk are related
to operators on the boundary. Hence, for a purely gravitational system, the complete
information of the bulk (M, g) is stored in the boundary data (B, guary., T)-

Therefore to get a solution generating algorithm using holography, one would have to
answer two questions: when is an exact bulk reconstruction possible using the boundary
data and which allowed boundary transformations give new solutions? Authors in [9-14]
have proposed a set of integrability requirements, which when obeyed by the boundary
data, an exact bulk can be constructed by resummation of the derivative expansion of the
boundary data. These integrability requirements also point out towards the possibility of
new integrable solutions (B, gj,q,,,7") for any given boundary data (B, gnary, 7). This is
reminiscent of the dimensional reduction of Geroch’s algorithm of section 1.1, and hence
once could reconstruct new bulk solution by following scheme:

(M7 g) 730 (B’ gbdry.a T) Z/ﬁ (B’ gl/odry7 T/) exact re?ns)truction (M’ g/)
where r and Uy, are the holographic radial coordinate and the U-duality group respec-
tively. In this chapter we will discuss these integrability conditions, the solution gener-
ating transformations and then show its application through the example of Plebanski-
Demianski Einstein spaces.

3.2 Holographic integrability

For pure gravity systems, the holographic dictionary suggests that in Fefferman-
Graham gauge, the holographic radial coordinate is the field theory energy scale and hence
holography is itself equivalent to a Hamiltonian evolution. The holographic integrability
question then reduces to a filling-in-problem, i.e., when can an analytic three-dimensional
metric be foliated by a four-dimensional Einstein space? Observations of [19] hint that
the answer to this question is related to the conformal self-duality of Weyl tensor, i.e.,

9



there exists a certain relation between the boundary stress tensor and the Cotton ten-
sor defined in (F.18). Similar observations from Fefferman-Graham expansion at order
by order in Weyl tensor for large-r [20, 21|, motivated the authors of [9-13] to look at
the canonical reference energy-momentum tensors (associated with fictitious conserved
boundary sources),

ik
3k3
which are by definition symmetric, traceless and conserved, i.e.,

Te =Ty + —5Chu, (3.1)

V.T* =0. (3.2)

Indeed if T* obeys the following conditions:

3K
C=—mT (3.3)
T = ReT™,

then a generic boundary metric, accompanied with canonical reference tensors 7= of a
perfect fluid form guarantees integrability (see the integrability conditions in 4.1 and the
r~3 terms in (F.11)). Furthermore, the resummed bulk metric is Einstein. In chapter 4,
we show the explicit form of this metric (4.6), starting from a boundary metric of the form
(4.3). For sheerless boundary congruence, whenever the resummed metric is Einstein, it
has to be algebraically speciall, i.e. of Petrov type II, III, D, N or O. The Petrov type
of the bulk metric is dictated by the Segré type of the reference EM tensor, which can
be either perfect-fluid, pure-radiation or pure-matter (or any combination). Hence, (3.2)
and (3.3) can be thought of as an holographic alternative of Geroch’s three dimensional
sigma model (2.6).

Indeed (3.2) and (3.3) are invariant under a rotation in the (C,T')-plane, i.e.,
T —T+=4T", T —T =71, z€C (3.4)

Hence any solution (B, gpary.,7") of (3.2) and (3.3) can be mapped to another solution
(B, ghary.» T"), potentially new. This transformation although local at the level of actual
stress tensor T (and Cotton tensor), is non-local for the boundary metric and the re-
summed bulk metric. Invariance of (3.2) under (3.4) can be recast as transformation of
energy density and Cotton density as

€ cosy  —siny £
(3%0) — |Z| (Sinw cos Y ) (%C) (35)

with z = |z|(cos® +isin). This transformation has the effect of rotation in (m,n) plane
where the bulk “mass”, m is associated with the real part of ¥y component of Weyl tensor
and the bulk NUT, n is associated with the imaginary part of Wy because for large r,

IR
This is precisely what (1.11) did for Ricci-flat spaces, which we failed to achieve for

Einstein spaces in section 2.2. Notice that for ¢ = —7/2 and |z| = 1, this is a gravitational
duality map, which exchanges the mass and NUT charge: (m,n) — (—n,m).

1See Appendix A.2 of [10] for a proof of this statement.
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We will now demonstrate the use of this holographic solution generating algorithm
for Plebariski-Demianski family of Einstein spaces with two-Killing symmetries in the
next section. This will be interesting for two reasons: firstly, Plebanski-Demianski spaces
capture all aspects of black-hole physics and secondly, we will be able to retrieve the
U-duality group of section 2.2 and 2.3 through the non-trivial structure of the canonical
reference energy-momentum tensors 7'*.

3.3 Plebanski-Demianski Einstein spaces

All known black hole solutions are Petrov type D [22] with two commuting Killing vec-
tors, which itself is a subclass of Plebariski-Demianski family [23], with an extra parameter
associated with the black hole acceleration. We therefore expect that the boundary met-
ric corresponding to the holographic dual of this metric has two isometries. To have a
non-zero acceleration parameter, we need to ensure that TF are not proportional to each
other, which forbids 0; = Qu from being a timelike Killing vector. This warrants for a
paramterization for the boundary metric different from the one used in (F.7) and (4.3).
Inspired from [11], we chose the boundary metric to be

2
FF XG dg? + F = GXE g2 o agdr + ifCG
where 7 and ¢ coordinates are adapted to the two Killing vectors and F and G are
arbitrary functions of the third coordinate y. Choosing the reference velocities as,
ui:%%)u:dgb—xsz%—d%, (3.8)
For a perfect fluid, the reference tensor T has the form of (E.2) where pressure is related
to the Weyl one-form (F.10) by?

ds? = (3.7)

1
AE + gdhqpﬂE = 0. (3.9)

Using the above the form of congruence, together with (F.6) and (E.2) allows us to
calculate the y-dependent pressure p4(x) to be,

kk mFn

3 (T
with some arbitrary parameters m and n that will appear in the resummed bulk met-
ric. Equations (3.2), (3.3) allow us to find the exact form of functions F' and G up to

some integration constants. With this we now have everything required to construct the
resummed bulk metric which turns out to be the Plebanski-Demianski metric [10].

p+(x) = - (3.10)

We have therefore found an exact Einstein space starting from boundary data thanks
to the integrability conditions (3.2) and (3.3). Therefore, starting from a given solution
with parameters (m,n), another solution can be found through the application of (3.5).
This is reminiscent of the SL(2,R)/N subgroup of Geroch action, as was advertised.

In the next chapter, we will finally try to construct the holographic dual of Geroch
group. To do this, we will use the derivative expansion used in fluid/gravity correspon-
dence developed in [24-29] instead of the standard Fefferman-Graham expansion. We
will do this because, firstly, derivative expansion can be resummed, leading to Einstein
spacetimes in closed form, and secondly, it can be extended to asymptotically locally AdS
[9-14] which allows a consistent vanishing scalar curvature, i.e., flatspace limit [14].

2The origin of these expressions is explained in detail in Chapter 4 and appendix E, F
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Chapter 4
Fluid /gravity duality

In chapter 3, we were mostly concerned with developing a new solution generating al-
gorithm that might contain the missing sector of chapter 2. We saw that holography is
able to probe this missing sector and hence deserves to be studied in detail. This will be
the goal of this chapter. An important tool for this will be the fluid/gravity dictionary
and derivative expansion, which are outlined in section 4.1. In section 4.2 we study their
Carrollian limit that emerges when scalar curvature vanishes. Finally, in section 4.3 we
show the recent progress towards Geroch dual and some of the answers we have found.
Appendix H provides an example of holographic reconstruction, where we reconstruct the
Ricci-flat Kerr-Taub-NUT family of spacetime using the boundary Carrollian fluids.

4.1 Fluid/Gravity duality in AdS

The AdS/CFT correspondence tells us that the dynamics of the normalizable fall-
off of the d + 1-dimensional AdS metric at the boundary (i.e., boundary stress tensor)
is that of a d-dimensional QFT. At high temperatures (large wavelength fluctuations),
every interacting QFT equilibrates into a “fluid phase”, i.e., a translationally invariant
phase in which adiabatic displacement of neighbouring elements requires no force [24].
The fluid/gravity correspondence has been described in details in Appendix E and F. It
can then be intuitively summarized as:

Fluid/gravity correspondence

A collection of large number of excitations of the QFT, that continually collide with
a mean free time ¢,, (and mean free length [,,,) can be characterized by density func-
tion, with their time evolution being governed by transport equations of statistical
physics (for eg: Boltzmann equation). For sufficiently long wavelength fluctuations
(A > [,,), variations of local energy density/temperature are slow and hence locally
at any point in the system we encounter a region of constant temperature. To this
domain, we assign a grand canonical ensemble to extract the relevant thermody-
namic quantities. Fluid dynamics then describes how these domains interact and
exchange thermodynamic quantities.

This becomes possible because we can describe the 5 degrees of freedom contained
in the symmetric-traceless boundary stress tensor (as discussed in the introduction of
chapter 3) with 5 degrees of freedom of the boundary fluid (one in energy density, €, two
in heat current, ¢* and two in symmetric-traceless viscous stress tensor, 7, of equation
(4.1), provided these are related to some derivatives of fluid velocity and temperature).
With this equivalence in mind, we summarize how to construct asymptotically locally
AdS-Einstein spacetimes in Eddington-Finkelstein gauge (along null congruence) starting
from boundary fluid data.

The two pieces of boundary data that we require are the fluid stress tensor and the
boundary metric:

Boundary stress tensor Consider a null congruence of geodesics that are timelike on

the boundary and extend into the bulk. The timelike boundary congruence is identified

with a boundary fluid which is characterized by normalized fluid velocity u (with normal-
12



ization |[u||* = —k?), acceleration a, expansion O, shear ¢, and vorticity w,,, given in
(E.9). Then the boundary stress tensor can be written in the form (E.10), i.e.,
Uy Uy UpGy n uyqu,
k? k? k?

where the fluid energy density e and pressure p are related by conformal equation of
state ¢ = 2p. The boundary energy-momentum tensor is conserved and its dynamics
is governed by the hydrodynamic equation (E.4). The Cotton tensor defined in (F.18),
which we stressed in chapter 3 as an ‘alternative’ description of the boundary metric,
vanishes when the bulk is asymptotically globally AdS (and the boundary is conformally
flat). For locally asymptotically AdS it can be extended just like (4.1),

CMV = §UHuV %

Ty = (e+p)

+ P + T + (4.1)

Cop  UuCy  UyCy
>k 2%k TR T (42)
where ¢, is the Cotton stress tensor, ¢, is the Cotton current and ¢ the Cotton scalar
density given explicitly in (F.22), (F.23) and (F.24) respectively. Notice the similarity
between the forms of energy-momentum tensor and the Cotton tensor in (4.1) and (4.2).
This similarity is the basis of our claims of chapter 3 and equation (3.3) in particular.

Boundary metric The boundary metric is chosen to be parametrized ¢ la Randers-
Papapetrou as in (F.3). The velocity one-form and the metric then are,

u = —k*(Qdt — b;dz"),

. o 4.3
ds;,, = —k*(Qdt — b;da’)® + a;;da’da’. (4:3)

In this frame, temporial components of heat current and viscous stress tensor vanish, i.e.,
qo = Too = T30 — To; — 0. Similarly, Co = Copop = Cjo — Co; — 0.

Bulk resummation Building upon the observation of [24-29] that the bulk geometry
should be insensitive to a conformal rescalings of boundary metric (since it corresponds
to bulk diffeomorphisms), authors of [9-14] were able to reconstruct the four dimensional
bulk metric order by order in derivatives of u. Under conformal rescalings, dsg,, —
dsp ., /B?, and hence, the boundary metric has a weight —2. Similarly r, 7, 7,, have
weight 1; €, p have weight 3; g, has weight 2; u has a weight -1 and w,,,, (vorticity two-form)

has weight -1. This motivates us to define a Weyl connection one form (F.10),

L o). »

where the explicit form of the fluid parameters a and © in the boundary metric (4.3) are
given in (F.6). We also define the corresponding Weyl covariant geometric quantities like
the Weyl covariant derivative &, (F.9), Riemman tensor %,,,° (F.20), Ricci tensor Z,,,
(F.21) etc. (see appendix F.)

Given all ingredients listed above, the expansion of the bulk Einstein metric was shown
to be of the form (F.11). Further substituting,
r?/p* — 2 — p*/r*,  where
2_ 2., 2 (4.5)
p? =1+~
and + is the scalar vorticity given by (F.17), allows us to resum the bulk metric (F.11) in
a closed form, provided the fluid is shearless, to give
2

u S u
dSEes. Einstein — QE(dT +7A) + r?ds® + = + e p?

where S is a Weyl-invariant tensor, given bl}é (F.12).

(87Ger + ¢v), (4.6)



Shearlessness This assumption of shearless congruence considerably reduces the num-
ber of terms appearing in (F.11) and hence deserves to be discussed in details. First,
notice that this freedom to choose a shearless congruence originates from the fact that for
relativistic fluids, it is impossible to distinguish heat current from matter flux, leaving one
degree of freedom in choosing the velocity field (see appendix E). Assuming a shearless
congruence is equivalent to demanding the two-dimensional spatial section . defined at
every time and equipped with metric di* = h;;dz’dz? which appears in boundary metric
(F.7) is conformally flat'. In d = 3 it is always possible to find such a shearless congruence
from which, one can recover all Petrov-algebraically special AdS spacetimes [12].

Interestingly, in flat spacetimes this assumption is a genuine fact, because the bound-
ary sheer is proportional to bulk sheer and cosmological constant as a consequence of
Einstein’s equations, and hence boundary shear has to vanish for A = 0. Furthermore,
equation (F.6), tells us that whenever there is a timelike Killing field (which we will
assume in section 4.3), boundary shear vanishes naturally.

Holographic integrability The metric (4.6) is an exact Einstein space, with cosmo-
logical constant, A = —3k? iff the following conditions are satisfied:

e The congruence u is shearless.

e The heat current of the boundary fluid introduced in (4.1) is identified with the
transverse-dual of the Cotton current defined in (4.2) and (F.23)., i.e.,

1 v
QN = 87TG77 MCV7 (47)

where 7", is defined in (F.15). Using holomorphic and antiholomorphic coordinates
¢,C asin (F.7)2 leads to 77<< =1iand 77% = —1, and thus

1 _
=3 (ced¢ — czdC) . (4.8)
e The viscous stress tensor of the boundary conformal fluid introduced in (4.1) is

identified with the transverse-dual of the Cotton stress tensor defined in (4.2) and
(F.24). Following the same pattern as for the heat current, we obtain:

1
Tur = g2 nCo (4.9)
and in complex coordinates:
i _
= _W (CCCdC2 — CC_C_dCQ) . (410)

e The energy-momentum tensor must be conserved, i.e., it must obey (E.4).

The conditions stated above are exactly the same as (3.1), (3.2), and (3.3) that were
discussed with regards to the holographic solution generating algorithm in chapter 3.
The cannonical stress tensor of (3.1), 7% in complex coordinates are given by

!Notice that any two-dimensional metric can always be brought into a conformally flat form, however,
here we wish to make di? conformally flat while ensuring that the three-dimensional metric is given by
(4.3). This is possible only if the transformations used to make it flat are of the form 2’ = 2/(x), i.e., if
the transformations have no ¢ dependence

2Orientation is chosen such that in the coordinate frame Noce = v/ —9€occ = 12, where 20 = kt.
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w1 1
T = €+ (ﬁ + §d€2) + R (26((1(11 — CCCdCZ) , (4.11)

With,
ic

8StG’

Ex =€k (4.12)

This should have been expected because the holographic solution generating algorithm
was also based on holographic integrability. Identifying parts of the energy-momentum
tensor with the Cotton tensor may be compared to the electric-magnetic duality condi-
tions in electromagnetism with (E.4) as a generalization of Gauss law. Note that the only
independent boundary data now is a;;, b;, {2 and e.

With this, we are now equipped to tackle one of the two questions that were raised at
the start of this report: “How is the holographic solution generating algorithm of chapter
3 related to the holographic duals of (M, g) and (M,q'), where g and ¢' are related a la
Geroch?” This auestion can be visualized through figure 4.1:

In AdS

a la Geroch

Bulk
fH
( (M, 9)

Figure 4.1: In AdS case,
we are interested in un-
derstanding the 2 sets
of question-marks: how
are the boundary fluids
(whose bulk duals are re-
lated by Geroch) related?
and how are these bound-
ary fluids related to the
solution generating algo-
rithm, U-duality group of
L chapter 37

Bdry. fluid \_ ? —/Bdry. fluid'
(B, Gbary, T) | U-duality »{ (B, Ubary, T'),

To answer this, one needs to start with the bulk metric of (4.6), assuming a Killing
vector (say 0;) and apply Geroch’s algorithm of section 1.1, to obtain a new ‘resummed
metric’. We expect that both the original and the new bulk metrices will correspond to
different boundary data, which however obey the same fluid dynamical equations, (E.4).
This will be the equivalent of sigma-model equations (2.2). However, for now, we will
postpone these calculations to section 4.3 and focus on developing flatspace holography
in section 4.2, so that we can tackle this and “Can holography provide new insights for
the Ricci-flat case” together.

1

‘wnsalying
‘wnsal yng

w 4— |

0 -t

4.2 Carrollian limit: Flat holography

As stated in the last section, the metric (4.6) is an exact Einstein space, with cosmolog-
ical constant A — 3k%. This k was introduced in our analysis as through the normalization
15



of boundary fluid, i.e., ||u||* = —k?. Hence, the Ricci-flat limit £ — 0, corresponds to fluid
velocity being a null congruence. This limit is also referred to as the “Carrollian limit”
[30-33|. Derivative expansion is well equipped to handle this limit because derivative
expansion constructs Einstein spacetimes in Eddington-Finkelstein gauge, i.e., the expan-
sion is performed along a null congruence. In this section we will first study what this limit
physically means, and then its consequences for the fluid/gravity correspondence.

4.2.1 Carrollian algebra

For vanishing k3, time decouples in the Randers-Papapetrou metric (4.3). There are
two limits in which time decouples from rest of the metric, associated with two distinct
contractions of the Poincaré group: the Galilean, reached at infinite velocity of light and
referred to as “non-relativistic”, and the Carrollian, emerging at zero velocity of light, often
called “ultra-relativistic”. Indeed both Gallelian, ¢’ = t/(¢) & x’ = x/(¢,x) and Carrollian,
t' =1t(t,x) & x' = x/(x) transformations are a subset of the diffcomorphism group. For
reference, let us briefly review the Gallelian group and infinite-c contraction.

Consider a free particle in an arbitrary d-dim. space .#, endowed with metric,
d? = aydz'da?, (4.13)

We can define an action which is invariant under Gallelian diffeomorphisms ' = ¢'(t) &
x' = x/(t,x) (and hence, has a Newton-Cartan structure on it) as,

Slx] = /dtQE(V,X,t), with (4.14)
1 i) (0 j
L(v,x,t) = 502 i (v —w') (v — ). (4.15)

where w' and v® represent the velocity of a local inertial frame, and the velocity of a
particle in it respectively. One can check that this Lagrangian indeed gives the standard
H = p?/2, free particle Hamiltonian for @/ = 0. In order to see that the Galilean group
is the infinite-c contraction of the Poincaré group, consider a d + 1-dimensional pseudo-
Riemannian manifold .#, endowed with a metric?,

ds? = —Q*c*dt* + ayy (dxi — widt) (d:ﬂj — wjdt) . (4.16)

The Galilean limit requires €2 to depend only on #>. Dynamics of a relativistic particle
on (4.16) can then be described using the length of the world-line %, using the action
parametrized by proper time for a physical observer, 7 = y/—ds?/c? as,

Slz] = [ dr = - (4.17)

Expanding for large-c,

Slx] = fgdtQ (1 — ﬁaij (v —w') (vV —w’) + O (1/c4)) , (4.18)

3Since k, the speed of light vanishes in the Carrollian limit, motion is forbidden. This might sound
alarming as one would think that no dynamics can emerge in such a system. However, extended instan-
tonic objects do still exist and have non-trivial dynamics, making this framework rich and interesting. In
fact, Carrollian dynamics turns out be even richer than its Gallelian counterpart (see section 4.2.2)

4(4.16) referred to as Zermelo metric, is the analog of Randers-Papapetrou metric (4.3)

5This is because the Newtonian absolute time, [ Qdt must coincide with the proper time 7.
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which indeed matches with (4.14) and (4.15) by ignoring the constant (and hence, Galilean
invariant) term. This shows that (4.16) is the natural relativistic spacetime uplift of a
Galilean space . endowed with a Newton—Cartan structure.

In an analogous fashion, one can show that the Randers-Papapetrou metric (4.3) is
the natural “ultra-relativistic” uplift of Carrollian space . endowed with a Carrollian
structure (i.e., a Carrollian fluid in a frame with ‘inverse velocity’® b = b;(t, z)dz’ and a
scale density factor (¢, x)) [15]. See appendix G where we work this out explicitly.

4.2.2 Carrollian ‘hydrodynamics’ and flat holography

In AdS case, the conformal boundary was timelike, however, for the flat case, the
boundary congruence is lightlike. As discussed in section 4.2.1, this corresponds to Car-
rollian limit, where time decouples from the boundary metric. Hence, the Carrollian
structure resides on a spacetime R x .#7, where t € R is the Carrollian time and the spa-
tial surface . which appears at the null infinity of the Ricci-flat geometry is endowed with
a positive-definite metric (4.13). The boundary energy-momentum tensor and boundary
metric can be parametrized using (4.1) and (4.3) just like in section 4.2.1. The Carrollian
energy and pressure are just the zero-k limits of the corresponding relativistic quantities
and obey the same equation of state. For non-ideal components, the £ — 0 limit requires
us to consider

=1 . —1lim (g — O
Qi = limg, m =lim 3 (6 — Qi) (4.19)
¥y = — lim K21, Zi=— lim (15 + 5255) - (4.20)

where @, w are the heat currents and ¥, = are the viscous stress tensors. Note that the
degrees of freedom are doubled compared to their Galilean counterparts, as promised in
footnote 3. Similarly, the zero-k limit of Cotton gives

= 1i ) C— Tim L (e — v,
Xi = lime;, oy =lim (ci —xi) (4.21)
Xij = llglir(l) cij7 \Pij = llgl{}(l) k—12 (cij — X’U) . (422)

Ricci-flat bulk Resummation Similar to the AdS case, we use Weyl invariance of
boundary geometry to get the resummed metric. Analogous to (4.4), we define a Weyl-
Carroll covariant derivative Z; (G.21), Riemman-Weyl-Carroll tensor R,” (G.24), Ricci-
Weyl-Carroll tensor @W (G.25) etc, where Carrollian quantities are represented with a
hat (due to the redefinition of partial derivatives (G.10)). The Carrollian fluid data, i.e.,
Carrollian fluid acceleration ¢;, expansion ¢, sheer &;; and vorticity w;; can also be defined
in a similar fashion by replacing the derivatives in (F.6) by their Carrollian counterparts,

b; A
0 = atﬁ + 0;In (2,
1 (4.23)
0= ﬁatln\/a,

6In Carrollian spacetimes motion is forbidden so we define a temporial frame using b

“In the previous section, we showed that the Carrollian structure is hosted by .# and hence this
can effectively be thought to replace AdS boundary for flat case. The idea of a Ricci-flat limit being
related to some contraction of Poincaré group at null infinity is not new [34-38], however, these studies
are accustomed to the standard CFT dynamics and relativistic fluids instead of Carrollian one, due to
potential confusion caused by equivalence of Gallelian and Carrollian algebra in two dimensions. Hence,
one should not forget that the boundary is still 3D, albeit the timelike direction is degenerate.
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Combining acceleration and expansion, we define an analog of Weyl connection (4.4),

0

which transforms appropriately under Weyl rescaling (G.18). Then the hydrodynamic
equations (E.4) give,

1 . A »
—ﬁgte — @ZQZ + waz‘j = 0,

. ; 1 S i

Dip +2Qwi; + Py — D=+ mlj =0, (4.26)
1 -~ ~ . P .
025 = 7% + Qi'j =0,

296, =0,

where since the d.o.f. are doubled, the first two equations correspond to energy-momentum
conservation (one scalar and one vector) and the latter set a geometrical constraint on
Carrollian viscous stress tensor X;; and heat current Q);.

Using this data, the boundary metric can be resummed to give

2
ds?., frar = —2(Qdt—b) (dt + rac+ @dt) +r2aijdxid:cj—|—s—|—M(SwGer—i—c*w),
2 P>
(4.27)
where
p =12+ *w?, (4.28)

is the analog of (4.5) and s is a Weyl invariant tensor analogous to S for AdS, (G.27).
Holographic integrability Metric (4.27) is closed iff:

e The heat current of the boundary Carrollian fluid introduced in (4.19) is identified
with the transverse-dual of the Cotton current defined in (4.21), i.e.,

1

Q= Ujin,

sr (4.29)
o J oy
i Sﬂ(;nzdy,

where 7, is defined in (F.15).

e The viscous stress tensor of the boundary Carrollian fluid introduced in (4.20) is
identified with the transverse-dual of the Cotton stress tensor defined in (4.22).
Following the same pattern as for the heat current, we obtain:

1
Tij = w=n'iX,
sm (4.30)
— l
Zij = s—=1iVy,
1T 8GN

18



e The hydrodynamics equations (4.26) are satifyed,
1 - 1 i a oA o4
—qZ¢t .07 (DK — i Dl +dxwn’i%;) =0,

A . 9 . o (4.31)
.@jG + 4*607]]in + ﬁgtﬂ-j — 2.@252 =0.

where the first two equations of (4.26) are satisfied naturally.

These conditions are analogous to those of section 4.1 and chapter 3. With this, we
can in principle find the boundary data corresponding to a Ricci-flat bulk metric. An
example of this is shown in Appendix H, where we explicitly construct Schwarzschild-
TaubNUT solutions starting from boundary Carrollian fluid data. Now we can finally ask
the question: “Can holography provide new insights into Geroch algorithm for the Ricci-
flat case?” To answer this, we would like to apply Geroch’s algorithm to (4.27), assuming
it has a timelike Killing vector. This process is summarized using figure 4.2:

In Flat Holography

ala Geroch

Bulk
ﬁ«%
C (M, )

A

Figure 4.2: For the flat
case, we would like to
know how the boundary
Carrollian fluids (whose
bulk duals are related
d la Geroch) transform
into one another.

|
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Carrollian fluQ‘ ? ,éarrollian fluid
4.3 Geroch dual

In section 4.1 and 4.2 we have outlined all the key components required to construct
the holographic dual. In this section I will briefly mention some of our results (preliminary
results are reproduced in appendix G). First, let us make some physical remarks:

In AdS Apart from answering the question that was already motivated in the beginning,
we also discovered in section 4.1 that the resummed metric (4.6) consists of all Petrov-
algebraically special four-dimensional locally AdS-spacetimes. Applying a Geroch-like
algorithm can then tell us “Is the set of algebraically special Finstein spaces closed”, i.e., if
we apply Geroch’s algorithm, are we guaranteed that the new metric will be algebraically
special? If yes, can we go from one Petrov type to the other? If not, can the new solutions
still be parameterized using (4.6)7

In Flatspace A similar question regarding the stability of algebraically special flat-
spacteimes can be answered via Geroch (probably more robustly owing to the incom-
pleteness of Geroch in AdS). But more importantly, in section 1.3 we mentioned that 0,
does not generate new solutions starting from Schwarzschild metric. In fact, it is known
that only timelike Killing vector generates new solutions for the equation of state e = 2p

19
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and only spacelike Killing vector generates new solutions when ¢ = —p in three-dimensions
[39]. Since for (4.27) we are using € = 2p, we expect only timelike Killings to generate
new solutions. This can be physically motivated from holography in our formalism: the
boundary corresponding to (4.27) is R X ., where time like direction is degenerate (null),
ie., t € R. It is known from the literature on Newton-Cartan and Carroll that a reduc-
tion along null Killing leads to Newton-Cartan structure, while if a null hypersurface is
embedded in a manifold, it has Carrollian structure [40]. Since bulk timelike Killing cor-
responds to null Killing on the boundary, Geroch’s dimensional reduction along £ = 9, is
like embedding a Newton-Cartan structure on top of Carrollian structure. Bulk spacelike
Killings cannot to do this and hence cannot generate new solutions. It would be interest-
ing to see if we can extend our formalism to € = —p and see if we can motivate that only
bulk spacelike Killings should lead to new solutions ¢ la Geroch.

Calculationally, the first thing to do is to expand (4.27), into its components and
assume that we have a timelike Killing field ¢ = 0;, for which 6 = 0, which simplifies the
Killing one form (I.1) and expanded metric (H.4) for the flat case to,

£ = Q(AQdt — dr — (AL + B)dZ — i(AD + Q)d®),  and (4.32)
2 2
®Lﬂm=Q%Mﬂ—2mya+dT(%%+LML+230—anMuAL+B)

2r72

2027
—QLde+d¢2(2) —JXAD—2QQ—%%Dmd® (4.33)

2
—2iQdtd® (AD + Q) + 2idZdP(ALD + LQ + DB),

where we have used the (¢,7, Z, ®)-coordinates such that ¢ = Ze® and the quantities
appearing here, A, B and @ are functions of (¢,r, Z, ®), while L and D are functions of
(t, Z,®), (H.3). Norm and vorticity of the Killing field (1.1) required for Geroch are

A= A2,
6bcde (434)
Wy = —gae\/—__g (é/\ dé)bcd .

We have explicitly worked them out for the metric (4.33) in Appendix I and verified that
they match for Schwarzschild and Taub-NUT cases.

Conclusions and Outlook

In chapter 1, 2 of this report, we presented Geroch’s solution generating algorithm and
its extensions and demonstrated their importance through various examples. In chapter
3 and 4, we motivated how holography is able to probe these and provide interesting
insights into both the solution generating algorithm and the solution space itself. For
this, we relied on [9-16] where the fluid/gravity literature was expanded to show that
one can recover all algebraically special bulk Einstein spaces using derivative expansion
under certain integrability conditions. Fluid/gravity correspondence was also extended
to flat spacetimes, and was shown to correspond to the Carrollian limit of its AdS coun-
terpart.

Through this report, a formalism to answer many interesting questions was developed
(see section 4.3 and figure 4.1, 4.2 for some of these questions and insights.) We have
preliminary results that answers some of these, however, these are yet to be verified and
hence have been omitted from the report.
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Appendix A
Taub-NUT geometries

The Taub-NUT solution is given by [23]
2

g =—f(r)(dt — 2l cos dg)* + ;1(—7;_) + (r* + I?) (d6” + sin® 0d¢?) (A1)

where 2 g 2
f(r) = %
r? +1
with constant parameters m and [, where [ is known as the NUT parameter. The twist
for each congruence is proportional to the NUT parameter, which is why [ is also regarded
as the twist parameter. In the limit when [ — 0, the metric reduces to Schwarzschild
solution with mass m. It is always possible to make m > 0, by taking r — —r. This
is why this solution can be considered as an exterior field of rotating source with radius
greater than r [1]|, where where r are the roots of f(r),

re =m=Evm?+I[2 (A.3)

, (A.2)

Taub-NUT spacetime has many unexpected global properties. In the NUT region r <
r_ and r > ry, r is spacelike, the metric is stationary and contains closed timelike curves
(curves on which ¢,r and 6 are constants). In the Taub region r_ < r < ry, r is timelike
and the metric is spatially-homogeneous|23|. All trajectories that enter Taub region,
remain within it for the same finite amount of proper time, which is why this region was
used to study cosmological models which are spatially-homogeneous, and more generally
those which are hypersurface-homogeneous and self-similar [41]. The two solutions can be
considered as part of a single manifold, being joined across a null hypersurface [1].

In terms of the natural tetrads k = ﬁ@t + 0, and [ = %&5 — f(;) 0,, the four spin
coefficients, k, o, A\, v become zero. By Golciberg-Sachs theorem the spacetime is therefore
Petrov type D and both its repeated principal null congruences are geodesic and sheer-free
[22]. This solution is also asymptotically flat, however, due to the singularity along half

of the symmetry axis, 8 = 7, the solution cannot be globally asymptotically flat.
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This singularity is quasi-regular singularity (as opposed to scalar curvature singular-
ity), and it’s interpretations by Lynden-Bell and Nouri-Zonoz (1998) advocate that there
are small advances of perihelion in successive orbits (similar to what was observed by NUT
for small {.) Hence although this is a purely gravitational solution, trajectories in this
spacetime seem to describe the motion of a charged particle subjected to both a central
force and a magnetic force due to a charged magnetic monopole at the origin, with mass
‘m’ and gravitomagnetic monopole (dyonic) moment ‘I’. Bonnor (1960a) treats the § = 7
singularity as a “frame dragging” caused by a thin semi-infinite spinning rod.

In 1963, Misner provided an alternative interpretation of Taub-NUT solution by forc-
ing the axis to be completely regular. This is done by applying the transformation
t — t =t — 4l¢ for the metric in the hemisphere 7/2 < 6 < 7 and gluing it to the
reference metric (A.1) at § = w/2. Because ¢ is periodic, t coordinate has to be periodic
with period 87/, which also ensures that the two coordinate patches join smoothly. This
makes the spacetime topology to be homeomorphic to B! X S? giving the time-dependent
region a reasonable interpretation as a closed Taub universe which exists for a finite time.
However, this happens at the expanse of requiring the stationary NUT regions to have
closed timelike geodesics.

Including an additional discrete 2-space curvature parameter, ¢ with values 41,0 and
—1, the original Taub-NUT solution (A.1) can be extended to include an electric charge
parameter e and a non-zero cosmological constant A,

_ i(¢dC—Cdo)\® a5 2d¢dC
g=—f(r) (dt—i—l—l Tt ) + e + (r*+1 )—<1 IEwoory (A4)
where
flr)= ﬂ;—l—lQ {e(rz — ) —2mr +e* — A <%r4 + 20212 — l4>} . (A.5)

The major difference compared to (A.1) is that the numerator of f(r) becomes quartic
rather than quadratic, giving an additional pair of cosmological-type horizons.
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Appendix B

Group theoretical aspects of non-linear
o-models

Let G be a non-compact real form of some-compact Lie group. There is an involutive
automorphism 7 : G — G, 72 = 1, such that

H={heG:7(h)=nh} (B.1)

is the maximal compact subgroup of G and the coset space G/H is a non-compact Rie-
mannian symmetric space [42|. Let P be a representative element of G/H. Freedom to
choose representatives leads to a gauge invariance with gauge group H, with the action of
G on G/H,

P(z) — h(z)P(x)g™', h(z)€H, g€ G (B.2)

Because the field equations of P are invariant under the action of both G and H, the true
value of the dynamical variables is in G/H. A metric v on G/H can be defined as

de'dg’vi(¢) = (S, ) (B.3)

where (-, -) is any invariant scalar product on the Lie algebra & of G and .# is a G-invariant
1-form which transforms H-covariantly, i.e.,

I = % (APP~' +7(dPP7")) = hIh™! (B.4)

The automorphism 7 provides us with a natural candidate for .# using the cannonical
embedding of G/H in G [43],

P M=r(PY)Pr(M)=M" (B.5)

where M is H-invariant and transforms covariantly under G. Then
1
S =DPP ' = 5PM—lde—l =PJP! (B.6)

where DP is the H-covariant derivative of P and J is the current corresponding to M.
Then (B.3) provides the metric on G/H and the o-model field equations are

DS, =0 (B.7)

where D, .3 = V.3 — [, #3|, where & is the connection for H. Hence we can conclude
that the “metric” M is sufficient to formulate the o-model. We can now give the precise
definition of Geroch group:

The Geroch group

Geroch group is the central extension G of a group of holomorphic functions G(>)
with values in SL(2,R) generated by transformations of A, the conformal factor. It

acts in the usual non-linear way on infinite dimensional coset space Gé‘;")/ H(®) of
the non-linear sigma-model.
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Appendix C
Kaluza-Klein theory

Consider 5 dimensional Kaluza-Klein theory, with metric gy y of signature {+, -, -, -, -}.
Upper-case latin indices (M,N,... = 0, 1, .., 5) represent coordinates on V> and Greek
indices (p, v, .... = 0,1,..,4) denote coordinates on V%. The action is then given by

Ig = —%/d%\/g}? (C.1)

where (2™ = z#,y) and (*) denotes quantities on V®. To ensure that the fifth dimension
is not observed, we assume the “cylinder condition”,

ygun =0 (C.2)

Eq. (C.2) is not invariant under general coordinate transformation. However, it is invari-
ant under transformations of the form

o =a"(x), ¥ =py+e(x) (C.3)

where p is a constant (this can be shown by demanding that eq. (C.2) holds true after a
coordinate transformation, where gy behaves like a usual rank-2 tensor). We can write
the metric on V° as

g5 | G55

In the following we will assume that g,5 = e,e5 # 0. Let us decompose the vielbein into
a component parallel and perpendicular to es, ie., e, =e¢,, + ¢, such that e, .e; = 0.

Therefore, ¢, = %65 and hence the 5 dimensional metric can be decomposed into

~(5 (le/) 9us
g = |- (C.4)

~(5 4 BMBN
Ghin = v+ g (C.5)

where By = gus/gs5 and @ = gss. Substituting (C.5) in (C.3) with p = 1, we can show
that B, transforms as
B;L = B, + 0,€ (C.6)

This is very similar to the gauge property of electromagnetic potential. In fact, if we as-
sume that F,, = 0,B,—0,B,, then one can show that the action (C.1) can be decomposed
as

1 1
I((;O) P /d4:€\/—_g (R + ZF“”FW> = Sgn + SeMm (C.7)

where we take gs5 = —1 and normalized B, such that B, = v/2kA,

There are 2 ways in which we can understand these results: 1. Using cylinder con-
dition, all that remains from the use of the fifth dimension is the increased number of
fields in d = 4, the reduced four-dimensional theory describes gravity and electromag-
netism. This procedure is called dimensional reduction, 2. Or, we can accept the fifth
dimension as a physical reality, and obtain all geometric properties of V°. This approach,
based on the modern concept of spontaneous symmetry breaking, is known as spontaneous
compactification.
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Appendix D

Plebanski-Demianski family

The Plebanski-Demiariski (PD) form of the family of type D solutions with two commuting
Killing vectors is given by

1 )(d7 — p2dé)2 P(d7 + 72d6)2 n2 2 "9 | A2
ds? — _ _Q(d7 P o) n ( T+7‘A o) Lf _|: 4+ P Tp a2 (o)
(1 —pr)? 72 4 p? P2+ p? P Q
for two quartic functions
P(p) =k +20p — &° +2mp® — (k + & +§° + A/3)p" (D.2)

Q(F) = (k+ &+ ¢%) — 27 + &% — 207 — (k + A/3)7"

with m, n, é, and g representing the mass, nut charge, electric charge and magnetic charge
respectively in the appropriate subclasses of PD family. Furthermore, with the addition
of two other continuous parameters o and w, we can set ¢ and k to +1,0 or —1, where «
and w are related to acceleration and rotation in appropriate subclasses.
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Appendix E

Relativistic hydrodynamics

Ideal fluid

For a relativistic fluid, mass and energy are on the same footing and hence instead of
working with mass density, we should work with energy density, €(t, #) and similarly with
4-velocity u* = da* /dr. We can write the normalized 4-velocity as [44]

p" p
w2 () ®1)
Note that due to the normalization, 4-velocity u* has the same information as the three-
velocity. The energy momentum tensor for an ideal fluid has to be built out of the
hydrodynamic degrees of freedoms. The symmetry properties of EM tensor imply that
in the local rest frame of the fluid (where velocity and the direction of energy flow are
aligned),
Uy

Ty = (e +p)=5 + PG (E.2)
where we have normalized the velocity as ||u||> = —k?, where k is the speed of light.
Since u* is along the temporal direction, we can decompose the spacetime into spatial

slices using a projector (i.e., the induced metric)

Uy Uy

h/u/ = Guv + k_2 (E3)
When there are no external sources, the energy-momentum is conserved
VI =0, (E.4)

and the conformal equation of state becomes € = 2p.

Dissipative fluid

To study the system away from equilibrium, we need to add a dissipative term to the
stress tensor. Since hydrodynamics is an effective field theory description, we can use
the standard QFT techniques and construct the effective lagrangian by considering all
possible relevant operators consistent with the symmetries. Since in this case the only
effective dynamical variables of the system are temperature and velocity field (see the
summary of 4.1), the relevant operators are built using T'(x), u(x) and their derivatives.
However, before we build these operators, we have to remember that for relativistic fluids,
the exact meaning of ‘velocity of fluid” becomes questionable (because of the equivalence
of mass and energy, i.e., between heat flux and energy flow). This ambiguity will allow
us to choose a velocity field (see F.3). In the local rest frame of a fluid element, we
can decompose the dissipation term into components orthogonal to the velocity field and
components along it, i.e., if the stress tensor is

T = Ty + Tyis (E.5)
then TV = " — u"¢”, for some vectors 7 and ¢”, such that

w, ™ =0 (E.6)
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Furthermore, using (E.4), we can relate the gradients of pressure and energy density with
the derivatives of u,

WV Ty =0 = (e+p)Vuu" +u"V,e=0

E.7
hoo VTl =0 = h'V,e+ (€+ p)hyau!Vyu” =0 (E.7)
Let us decompose the gradient of u* as
1
V,u, = ﬁ@hw + o + W — Quty (E.8)
where up to leading order,
a, =u"Vyu,
0 =V, u"
1 1 E.9
Ty =V (uthy) + 35w — 5O (ES)
W =V [uy] + 7.2 U]

are respectively the acceleration, the expansion, the shear and the vorticity of the congru-
ence u. Since at leading order the dissipative part of the stress tensor is also built from
gradient of u#, (E.6) and (E.8) tells us that the only symmetric rank-2 tensor is

Uy, Uy, Upqy — Upq
Taw = (e 4+ P) =5~ + PG + T + =57 + =57 (E.10)
Equation (E.6) then enforces that
utt,, =0, u'q, =0 (E.11)

Upto first-order in hydrodynamics, the boundary heat current ¢ and viscous stress tensor
T can be expressed as expansions in fluid velocity and temperature derivatives,

Tur = _277ng - ChHV@) (E]_Q)

T
q(l)ﬂ = —Iﬁhﬂy (&,T + ﬁ CLV) s (E].B)

where 7, ( are the shear and bulk viscosities, and & is the thermal conductivity. We also

define the scalar vorticity ~,
1
2

T2kt
and the Hodge dual to vorticity two-form as:

v W . (E.14)

*w = kyu (E.15)
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Appendix F

Fluid /gravity correspondence

The holographic principle states that there exists a one-to-one map between the single
particle states in classical Hilbert space of gravitational theory and single trace operators
in gauge theory. The most familiar example of this is the duality between SU(N) N =4
super Yang-Mills (SYM) theory and type-IIB string theory on AdSs X S®. Interestingly on
the string theory side, at large coupling A, type-IIB supergravity on AdS; X S° admits a
universal truncation to Einstein’s gravity with negative cosmological constant [24],

d(d—1)

1
E. =R, — §Rgm, + Ag =0, A=— 2112;613

(F.1)

This suggests that there exists a decoupled sector of stress tensor dynamics in N = 4
SYM at large A. In fact, at two-derivative level, there is an infinite number of conformal
gauge theories for which (F.1) describes the universal decoupled dynamics of the stress
tensor. The dynamical equation of hydrodynamics, conservation of stress tensor (E.4),
depends only on stress tensor and hence should lie in this decoupled sector. This inspired
the authors of [24-29] to study the AdS/CFT correspondence in the hydrodynamic limit
(large temperature and long distances w.r.t. laqs) which lead to a map between fluid
dynamics and gravity, now known as the fluid /gravity correspondence.

The correspondence can be summarized as follows:

Bulk Boundary
Static black holes — Static frame with a temp.
At eq™ field T(x)
Hawking temperature <— Temperature of the fluid
Horizon boost velocity <+— Fluid dynamical velocity

Away from the equilibrium, the solutions are corrected order by order in a derivative
expansion. Then the domains of “nearly constant fluid variables” on the boundary can be
extended radially into the bulk [24]. Then,

Patched black holes with «+— Boundary fluid with varying
Away from eq™ temperature gradient, s.t., velocity and temperature
they obey (F.1)
At leading order:
Radial momentum con- <+— Velocity and temp. fields

straints for gravity in obey ideal fluid dynamics,
AdS (E.4)

Boundary metric

Let the boundary be a D-dimensional hyperbolic geometry equipped with a boundary

metric
ds* = gyndr™dz™ (F.2)
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Let u* be the velocity of the boundary fluid with its acceleration, expansion, shear and
vorticity given by (E.9). If ¢ is the coordinate adapted to u, i.e., @ = 9;/S, then

u = —k*(Qdt — b;dz") (F.3)

and in this choice of coordinates, hops = 0 (where hy, is taken from (E.3), and is w.r.t.
the three-dimensional metric (F.2)). Hence the metric becomes

dsp., = —k*(Qdt — bydz’)* + a;;dz'da’ (F.4)

which is also referred to as Randers-Papapetrou metric. In this adapted frame (F.4), the
Weyl connection, and various parameters of the congruence u (E.9) are given by

1

A
Q

1 -1

a=k (81» In 2 + %@bi) da’,

k2 1 1 D
1
e = ﬁat In \/E,
1 o
g = E (@aij — al-jﬁt In \/5) dz'da’.

When 0, is a Killing field, the shear in (F.6) vanishes and we can parametrize the
metric as [45]

— - 2 —
dspqry = —Q7(dt — b)* + dI* = —Q*(dt — b)* + —aps d¢d¢ (F.7)
where P and  are arbitrary real functions of (¢, ¢, () and
b=B(t,¢.()d¢ + B(t.¢.()dC (F8)

Derivative expansion

With this boundary metric, we can now construct the bulk geometry. The bulk diffeo-
morphisms correspond to conformal rescalings of boundary metric dsjy,, — dsig,., /B,
and hence bulk metric should be insensitive them. Covariantization with respect to the
rescalings then require that, 2, u* and u’\.@,\u“ should vanish, where we have replaced the
ordinary derivatives by Weyl covariant ones, i.e., for a tensor v, of weight-w,

Dy, =V, + (w+ 1A, + A, — g, A%, (F.9)

where A is Weyl connection one-form

A— % <a - %u) (F.10)

that transforms as A — A — InB. For any symmetric and traceless tensor of conformal
weight 1 (like EM or Cotton tensor), 2,5, = V,S”,. Correspondingly, we define the
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g

Weyl covariantized Riemann tensorZ,,,”, Ricci tensor %, etc. In our notation, Weyl
covariant quantities will be denoted by curved letters like &7 A% .

The authors of [9-13] then showed that for a sheerless boundary fluid, resummed bulk
metric is given by
u S
dSpu = 2ﬁ(dr +1A) +rids® + o
u? 1 8rGTy,u ur O unw
af AL AU vo F.11
+ T2 (1 — —2k4r2wa5w ) ( 02 r+ S ) ( )
+ terms involving the shear o + O(2*u)

Here, r is the radial coordinate, x* are the three boundary coordinates, k is a constant
related to the cosmological constant by A = —3k? and xk = 3k/87G, while S is a Weyl-
invariant tensor related to the Schouten tensor, .%,, = %Z,, — %%’gw and is given by

K
S = Spdatda” = —2uPw" da* — wu’\w/\yda:“dx” — u25; (F.12)

The metric can be resummed into the closed form (4.6), by identifying the resummation
coordinate p, such that
2
2 2 2 2, 4
- = - F.13
pr=rt Ayt =T+ 1k ( )
where v was defined in (E.14). The derivative expansion can be organized in the powers
of ¢, which is the proportionality constant of the hodge dual of vorticity with velocity
field!, i.e.,

nupawya = QUH (F14)

In presence of fluid congruence u, this allows us to define a fully antisymmetric two-index
tensor,
uP
Ny = _?npuw (F15>
obeying
Mol = Ty (F.16)

where h,,, is w.r.t. the bulk metric (F.11). This implies that v can be further simplified
to give

5 1

1 1 1
Qb[iaj]Q + ﬁb[z@tbﬂ) (3[kbl] + ﬁb[kaz]Q + ﬁb[k@:bl}) (F.17)

In three dimensions the Weyl tensor is identically zero and all the information about
geometry is captured in symmetric traceless conserved Cotton tensor C = C),dz*dz",
given by

4

where F,, = 0,A, — 0, A, is the antisymmetric field strength tensor and can be thought
of as the effective torsion,

R
O/,l,y — nupo—@p (Lﬁl/o’ + FVO') — /r]'upo'vp (Ryo— - _gVO') (F18)

(2.2, — 2,2,,) f = wfFL (F.19)

Lwhere 7 is similar to the one obtained in section 1.1 with n#*® = ¢t /,/—g
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This tensor is vanishing iff spacetime is conformally flat. The Weyl covariant Riemann
tensor and Ricci tensor are defined as,

(240 — Dy D) VP = R,V +wV?E,, (F.20)

Ry = Ry + VA + ALA, + g (VaAY — A\AY) — F,, (F.21)

where V' are weight-w. In Landau frame, hydrodynamic components of 7, are transverse
to u because of (E.6) and the boundary energy and cotton density are introduced as
e(x) = Tputu” and c(x) = Oy uru”. Vorticity of the boundary congruence w, is given
by %wwdx“ A dz¥. Cotton density, current and stress tensor can be further expressed
as

v 1 v, O
CcC = ﬁc'uyu“u = ﬁu 77 P.@p (yucr + Fl/O') 5 (F22>
uCy, .
c, = —Cu, — ’ = 779 @p (ﬂw + Fua) — ClUy, (F23)
1o ck? N oo oo ck?
= —kR 0T, Cop by = =17, (k7 — ™) Dy (o + Fro) + —-hik-24)

With the above boundary data, the bulk velocity field 0, of the 4D resummed metric
(4.6) is null, geodesic and shear-free [10]. From the corollary of Goldberg-Sachs theorem
[22], the Einstein bulk geometry (4.6) is therefore algebraically special.
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Appendix G
Flatspace holography

In section 4.2.1 we showed that Zermelo’s metric is the natural relativistic spacetime
uplift of a Galilean space endowed with Newton-Cartan structure. In this apppendix
we will first show that Rander-Papapetrou metric is the natural “ultra-relativistic” uplift
of Carrollian space and then go on to motivate flat holography. We will also show the
explicit expressions for some of the quantities discussed in section 4.2.

Similar to the Galilean case (4.14) and (4.15), we can define an action which is invariant
under the Carrollian diffeomorphisms, ¢’ = t'(¢,x) & x' = x/(x):
S[t] = / dz\/aL(0t,t,%), (G.1)
Ve
where L£(9t,t,x) is the Lagrangian density:

L0 x) = %aij (it — bi) (0t —by) (G.2)

associated to fields on a d-dimensional Euclidean space S given by (4.13), and equipped
with real time line t € R. Here b; represents the inverse velocity defined in footnote 6,
which transforms under Carrollian diffeomorphisms as

0 )
b, = <b,- + 73;-) Ju (G.3)

where the Jacobian functions J, j; and J; are defined as

ot ot : Ox"
—, git,x)==—, Ji(x)= . G.4
) = o T = (G4)
Similar to section 4.2.1, we can show that by considering a relativistic instantonic d-brane
in a pseudo-Riemannian manifold M, endowed with Randers-Papapetrou metric (F.4),

the Dirac-Born—Infeld action reads:

J(t,x) =

S[h] = [y d%yv/h, (G.5)

where h is the determinant of the induced metric matrix
ox* dx¥

hij = 9w -

oyt OyJ

(G.6)
with g, given by (F.4). We can compute this determinant h in powers of ¢? to give
Vh = det av/a <1 - ?akl (Q0kt — by,) (0t — b)) + O (04)) : (G.7)
Hence (G.5) becomes
S[h] = /yd%ﬁ (1 — gakl (Q0kt — by) (Q0it — by) + O (04)) : (G.8)

32



Neglecting the constant (Carrollian invariant) term, (G.8) describes the same dynamics
as (G.1), (G.2) proving our claim that Randers-Papapetrou metric (4.3) is the natural
“ultra-relativistic” uplift of Carrollian space endowed with a Carrollian structure.

Also note that under Carrollian diffeomorphisms, the ordinary exterior derivatives do
not transform as a form, i.e.,

/ 1 / —14 ]z
8t = jat, aj = J 1j < P 78t> . (Gg)

While the time derivative transforms appropriately, its action on metric does not vanish,
i.e., Oia;; # 0. This motivates us to define new Carroll-covarint derivatives,

1.~ . 1 . i .
ﬁatVZ = ﬁatvl + Y VI

J

A . (G.10)
which indeed transforms as . N
o =740, (G.11)

under Carrollian diffeomorphisms. When this derivative acts on scalars, we get a one-form,
however, for other tensors we need to introduce a new Levi—Civita—Carroll connection
’yji-k = fy;'-,C + cjk where fyj-,c is the standard Levi-Civita connection. The f}ij appearing in
(G.10) is the corresponding “temporal Carrollian connection”

o L

’}/Zj = E&Z 8takj, (G12)
Note that on scalar functions the Carrollian time derivative acts as an ordinary time
derivative: 0,® = 0,®. The trace and traceless parts of (G.12) are identified with the
Carrollian expansion and shear. Hence the parameters associated with Carrollian fluids
are:

, 1
0= = c0mVa,
i Ly L
=95 553'9 = Ea k (@akj — ag;0 In \/a) ,
X b (G.13)
vi=4 (Oib; +0iQ2) = 31:5 + 0;In (2,
Qb - b
@ij = by + by = 5 (515] - 3@)

We can also define the corresponding Levi-Civita covariant derivatives V = d+ 4 and
the Riemann-Carroll and Ricci-Carroll tensors:

i = Oy — Oy + e WG — Y Tiye and (G.14)
Ak
o (G.15)

= 5;; + Kaij + Anij.
Ricci-Carroll tensor is in general not symmetric and hence we have defined 3;; as the sym-
metric and traceless part which vanishes when the Carrollian fluid is shearless and,
K= Lavp, = Yo A= Lyin — s (G.16)
2 Y27 20 Y
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are the scalar-electric and scalar-magnetic Gauss—Carroll curvatures, with

1 ..

Demanding Weyl invariance of the boundary Carrollian data' is equivalent to defining
a Weyl connection a; = ¢; — gbi which transforms under Weyl transformations as

where B = B(t,x) is an arbitrary function, s.t. the boundary geometry transforms as

B—;, bi — Q— — (G.19)

1] Ba B’

Corresponding to this Weyl-connection, we define Weyl-Carroll covariant derivatives that
9; and %; that obey A R
%akl = 0, %akl =0. (G.QO)

For a weight-w scalar function ®, or a weight-w vector V¢, i.e., one that scales as BY
under (G.19),

2,0 = 0;® +wp;®, V' =V Vi (w— 1),V + ¢V, — 6 Vi, (G.21)

Similarly, we define

1 - 1. w 1 w
5.@1@ = 58@ + 59(1) = 58@ + 59@, (G.22)
and 1 | 1 1
oyl tAayl W L 2oyl Yol o clyi
Q%V Q&V + 5 A% Q@V + 29\/ +&,V, (G.23)

where ; leaves the weight unaltered and %.@t increases the weight by one unit. We can
the define,

A

@ijkl = T‘ijl — 5;¢kl — (ijﬁlgoi + aﬂ@kgoi + 5;{@[@]’ — 5;@%0]'
+¢' (eraj — @rae) — (0paz — 0jagr) eme™ + (S0 — G10k) 0;  (G.24)

A~

as the Riemann-Weyl-Carroll weight-0 tensor, where ¢;; = Aicpj — 0jyp; is a Carrollian
two-form. From this we can define the Ricci tensor,

@Z:@kz :f@—FCLZ@ k_ I
J ) kj A J _Z kgp 80.7 (G25)
= Sij +<%/6Lij + ,,Q{T]”

In this expression §;; is a symmetric and traceless tensor, which vanishes for shearless

Carrollian fluids. Also,

A 1 .. 4 A A A 1 .. 4 A
H = Ea”%ij =K+ ngpk’ of = 5’)72]%2']' =A—- * (G26)

'For flat case, the boundary is a spatial surface at null infinity .# *. The geometry of .# T is equipped
with a conformal class of metrics rather than with a unique metric. From a representative of this class,
we must be able to explore others by Weyl transformations, and this amounts to studying conformal
Carrollian geometry as opposed to plain Carrollian geometry
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are the Weyl-Carroll scalar-electric and scalar-magnetic Gauss—Carroll curvatures both of
weight 2. With all this data we are now in a position to take the vanishing-£ limit of the
resummed metric (F.11) and the boundary fluid data.

For the boundary data, let us assume that a;;, b; and Q were independent of £ and
hence remain same in the vanishing-k limit. These then coupled with the integrability
conditions of section 4.2 provide all the necessary Carrollian fluid data. Defining a Weyl
invariant tensor,

s = 2(Qdt — b)Yz, D; * w + wwaatdz’ — A (Qdt — b)? (G.27)

we can show that the vanishing-%£ limit of the resummed metric (4.6), for algebraically
special bulk geometries gives (4.27). The bulk metric is indeed Weyl invariant provided
that r transforms a weight-1 tensor, i.e., (G.19) can be absorbed by setting » — Br. The
integrability conditions are as outlined in 4.2.2 where all the information is encoded in
df?, b; and Q, such that: the Carrollian density,

c=<@9k+1%)*w. (G.28)

and the weight-2 current forms, y; and 1; from (4.21), and the weight-1 symmetric and
traceless rank-two tensors from (4.22) read:

1, ~ ~ 1. - N

X; = 57’}%.@5%4’ 5@]% — 2% ?ﬂe@j, (G29)

v = 3, D, (G..30)
1 Ao 1, ~ 4

Xy = S0 D%+ 1D, (G.31)
. 1 . 1.

\Ifz'j == .@1.@] * W — iaij-@l@l * o — ﬁijﬁ.@t * wQ. (G32)

Integrability conditions dictate that the components of energy-momentum tensor are dual
to these and are given by (4.29) and (4.30). For sake of completeness, we write some of
the Carrollian quantities in the complex coordinates (¢, () with boundary metric at .7 in
conformally flat form d/? given in (F.7):

be - b -
%:@é+@mg %:@6+Qmm (G.33)
2 iOP? [ A be 4 be
with ) s
Oc =0+ =0y, Or =0+ 20 (G.35)
Q Q
Also, A X ) o
H =K+ Vipt, o =A—xp, where (G.36)
K = P* (90 + 0.0 ) mP,  A=iP* (80, - 0.0;) m P, (G.37)
*Q = iP? <(§CQO§ - é&g&g) ) (G38)
Vi = P2 |00 + 005 + (80 + 0D ) m @ (G.39)
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Appendix H
Carrollian fluids, Schwarzschild-Taub-NUT

In appendix G, we showed that all information about the boundary Carrollian fluid is in
the geometric data of .77, i.e., a;;(t,x), b;(t,x) and Q(¢,x). Let us try to reconstruct the
Kerr-TaubNUT solution starting with some given Carrollian data.

To do this, we will first find the Carrollian data for the simple case of Schwarzschild
geometry, and then show that similar data can give us the complete Kerr-Taub-NUT
solution. Let us expand the resummed metric (4.27) and write each component of the
metric separately:

(Qdt — b)?

02 o
dsges.flat = _Q(th - b) (dt +ra+ %dt) + TQCLZ'deL'IdI] + s 4+ 5
p

(87Ger + ¢ * w)

_ 0 29?2

— —2(Qdt — bed¢ — bedC) (dt + r(acd¢ — agdQ) + %dt) + %dgdg

(Qdt — bedC — bedC)?
2

2 2
— A(Qdt — LdZ — iDAD)? + %(dZZ + 72d9?%) — 2(Qdt — LdZ

+s+

(8nGer 4 ¢ * w)

Q
—iDdP) (dr + BdZ +iQd® + %dt)

(H.1)
where we have substituted the complex coordinates (¢, () by
( = Zexp{i®} ( = Z exp{—i®} (H.2)
Also, the quantities appearing in the last line of (H.1) are:
Ar, 2, 6) = 87?Ge7’p—2|—c*w B A’
L(z,¢) = bee'® + bze_iq),
D(z,¢) = Z (bee™ — bee ™), (H.3)
B(r,z,¢) = (ra¢ + i@c * w)e'® + (rag + z% xw)e ' and
Q(r,z,0)=Z ((rozc +iD x w)e'® — (rag + @.@C * w)e_i¢’> .

Here ¢, xw, p*, A, ac, 9 are given in (G.28) (G.33), (4.28), (G.36) and (4.25) respec-

A

tively. Also since *w is a scalar of weight-1, and hence it’s derivative Z; *w is taken using
(G.21). With this, we can write the components of the resummed metric as

2p?
p2

ds?es f1ar = (A — r0)dt? — 2Qdrdt + dZ° ( + L(AL + 23)) +2LdrdZ

20% 72
p2

+d®? (

+iQdtd® (D(rf — 24) — 2Q) + 2idzd®(ALD + LQ + DB)

— D(AD — 2@)) + QAtdZ (L(rf — 24) — 2B) + 2iDdrd®

(H.4)
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Let us compare this metric with the standard Schwarzschild metric in Eddington-
Finkelstein coordinates, (u,r, Z, ®) to get the unknown pieces €2, b;, P and e:

2
ds? = — f(r)du® — 2drdu + ~ (dZ* + Z?dd?) (H.5)
(1+%)

where u is the retarded time coordinate. Clearly, the gy, 9,7, and g, components require
2 =1, L = D = 0 respectively. This implies that b; = bz = 0. Substituting this in g;z
and g;¢ components implies that B = Q = 0. Also note that from (G.33) and (G.34) we
have ¢; = 0 and *w = 0. From (4.25) this implies a; = 0. Now comparing the g7 and

g components tell us that P =1+ Z; Finally, substituting this in (G.36) tells us that

2 =1 and hence, A = —(1— 8”7(;6) Comparing the g; component now demands that
47Ge = M, where M is the mass of the Schwarzschild black hole. Hence, the boundary
data for Schwarzschild geometry is:

Q=1
be=bz=0
_ 72
P=1+$ o142 (H6)
2 2
M
6:_
4G

Following a similar procedure for the Taub-NUT metric (A.1) in (Z, ®)-coordinates:

2
2 4 7* 2(r? 4 12
ds? = —f(r) [ dt + —25 224D | — —_drd® — 2drdt + 2074V 472 4 72d9?)
I+5 1+5 (1+%)

(H.7)

where

r? — 2mr — v?

Once again, the g, and g,z components require ) = 1 and L = 0 respectively. The g,
component requires

(H.8)

i 7> B 20iCC

D=— = > H.9
1+42 144 )
Therefore,
iz C 2 '
L — __vie b= —— e = e (H.10)
2(1+ 2) 2(1+ ) 21+ %) 2(1+ %)

substituting this in (G.34), gives w = v. This implies that B = = 0. Then, the g,z and
gio components are satisfied trivially provided P = 1 + %2 This also varifies with gz

and ¢gze components. Finally, substituting this in (G.36) tells us that # =1 and hence,
A=—(1—- SWTGE) Comparing the g, we once again get 4mrGe = m. Hence, the boundary
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data corresponding to Taub-NUT is:

Q=1
2(1+ %) 2(14+ %) H11)
¢¢ z? '
P=1+2=1+">
o T
M
‘TG

Following similar procedure for Kerr metric, we can show that we can reach the whole
family of Kerr-Taub-NUT stationary Ricci flat black holes by setting the geometric data
to be: P(x), bi(x) and Q@ = 1. Starting with this data, we can recover the family of
solutions:

A 2 a v 2 p2
2 o r 9 9 9
dsperf.ﬂ. = _? (dt‘f'ﬁ(n—ﬁ—’—ﬁ(l—uﬂ)Z)Zd@) +A_Tdr

2

+2—'02d22 + 22 (Ka+v(1—|K|)dt — (r*+ (n —a)?) dqﬁ)z(H.12)

P2 p2 P2

with

K 2 v 2
le—i—EZQ, p2:r2+(n+a—F+F(1—\K|)Z2) :

A, ==2Mr+ K (r*+a*—n®) +2v(n—a)(|K| - 1).

(H.13)

Here we have moved from Eddington—Finkelstein to Boyer—Lindquist coordinates by,

r? 4+ (n —a)?
A,

Ka+v(l —|K|)

dt — dt —
— A

dr, d® — do —

dr (H.14)

Here, the n, a, [ parameters are the NUT, rotation and flat-rotation parameters respec-
tively that one sees in Kerr-TaubNUT family (see [1]). Also, K = 0,41 depending on
whether the S corresponds to sphere S2, the Euclidean plane E, or hyperbolic plane H,.
We also show that the ‘inverse velocity’ parameter is

i

b= (n— 5+ 55 (1K) ¢C) (¢d¢ = ¢dC) (H.15)

and the energy density is always identified with bulk mass M = 47 Ge.
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Appendix I
Geroch dual

For a timelike Killing vector, 0; with the Ricci-flat resummed metric (4.27), the one form
is given by gy,

£=0Q (Q(A — r0)dt — dr + ((r0 — 2A)L — 23)% +i((r6 — 2A)D — 2@)?) (L.1)

Then we can write

A€ = dr A 9,& + dZ A 9€ + AD A Dol (L.2)

We can use this to find the vorticity of £ (4.34). For the case of 2 = 1, we have verified
that we recover the results for Kerr-TaubNUT metrices (at least for the Schwarzschild
and Taub-NUT cases), however these are yet to be verified and we will not display the
results for Killing vorticity one-form and scalar.
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