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ABSTRACT

In this report we start with some basic definitions and theorems as an introduc-
tion to Group theory, following which we construct the finite groups of orders
up to 13 and look into their possible representations. We conclude with a brief
discussion on Representation theory, which serves as a more formal approach
to studying group representations, and with special emphasis to finite groups.
We will be following the texts Group Theory and Its Applications in Physics[1]
andGroup Theory: A Physicist’s Survey[2] in this report.
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1 GROUPS

A group G is a set of distinct operators,

G : {G1,G2, . . . ,Gk , . . .}

such that for any 2 operators (also known as group elements) Gi , G j an op-
eration (◦) called the group multiplication is defined, that satisfies the group
axioms. We say that G is a group under ◦ if (G ,◦) is a group.

1.1 GROUP AXIOMS

• Closure For any 2 operators Gi , G j of the group G their unique product
also belongs to G .

Gi ◦G j =Gk

• Associativity For any Gi , G j , Gk belonging to G ,

Gi ◦ (G j ◦Gk ) = (Gi ◦G j )◦Gk

• Existence of Identity Element There exists an element G in G such that,

G ◦Gi =Gi ◦G =Gi

for any Gi ∈ G . This element G is called the identity element or unit ele-
ment and will be represented as E 1 henceforth. Also from the above defi-
nition of E we can say that

E ◦E = E

Theorem 1. Any group G has a unique identity element.

Proof. Let E1 and E2 be two identities of G . We have E1 ◦E2 = E1 and
E2 ◦E1 = E2. Therefore

E1 = E1 ◦E2 = E2 ◦E1 = E2

1or as e
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• Existence of Inverse For every element G ∈ G there exists an element G ′

also belonging to G such that,

G ◦G ′ =G ′ ◦G = E

We call G ′ as the inverse of G .

Theorem 2. Any element G in G has a unique inverse G ′.

Proof. Let G ′
1 and G ′

2 be two inverses of G . We have G◦G ′
1 = E and G◦G ′

2 =
E and so

G ′
2 ◦ (G ◦G ′

1) =G ′
2 =⇒ (G ′

2 ◦G)◦G ′
1 =G ′

1 =G ′
2

Note that the group axioms do not require the commutative law to hold true.
However there do exist some special groups that are commutative. Such groups
are known as Abelian groups and satisfy the following property,

Gi ◦G j =G j ◦Gi

where Gi ,G j ∈G and G is an Abelian group.

Groups having an infinite number of elements are known as infinite groups and
those having a finite number of elements are known as finite groups. For a finite
group having a total of n elements, the order of the group is n.

1.2 BASIC CONCEPTS

1.2.1 Subgroups

A subset H of the group G is called a subgroup of G if it satisfies the four group
axioms. Observe that for H to be a subgroup we require only the following
conditions to hold

1. For any two Hi , H j ∈H we have Hi H j ∈H .

2. For every H ∈H there exists a corresponding H−1 ∈H .

Did we reduce the four group axioms into the above two? NO! Recall that H
is a subset of G and so by default associativity holds in H . Also from conditions
(1) & (2) existence of the identity element is guaranteed since H H−1 = E . The
set {E } and the group G itself are trivial subgroups of G . Any other subgoups of
G are known as proper subgroups.

5
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1.2.2 Generating elements

If every element of a group G can be expressed as the product of a smaller sub-
set of distinct elements, we call this set of elements as generating elements or
generators. For cyclic groups there exists exactly one unique generator. Also
note that the choice of generators can vary.

1.2.3 Multiplication Tables

The structure of a group can be visualized using a multiplication table. We con-
struct this table by placing the group elements G1,G2, . . . ,Gn in the top row and
in the leftmost column, as shown in Figure 1. We then place the product Gi ◦G j

2

at the intersection of the i th row and j th column.

Figure 1: Construction of a multiplication table

1.2.4 Rearrangement Theorem

Theorem 3. Consider a group G : {G1,G2, . . . ,Gn} of order n. On multiplying G
with an arbitrary element G ∈G we obtain the set

G G = {G1G ,G2G , ...,GnG}

where each element appears only once and belongs to the group G .

Proof. Take any element Gi ∈G , which on post multiplication with G gives Gi G
that belongs to G as per the closure property.
Now lets consider some Gi G ,G j G ∈G G such that

Gi G =G j G

2Henceforth we shall represent the group multiplication as Gi G j instead of Gi ◦G j .
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It is trivial that Gi =G j for the above to hold. However this is a contradiction as
every element in a group occurs only once. Therefore every element in the set
G G is unique.

Observe that as a consequence of this theorem every group element ap-
pears only once in any row or column of the group multiplication table.

Aliter Let f be any function that takes group elements Gi as an argument. Then
for an arbitrary element G ∈G

g∑
i=1

f (GGi ) =
g∑

i=1
f (Gi G) =

g∑
i=1

f (Gi )

1.2.5 Direct Product

Consider two groups A and B with elements {ai }, i = 1, . . . ,na and {b j },
j = 1, . . . ,nb respectively. We now define

A ×B = {Ai B j | i = 1, . . . ,na and j = 1, . . . ,nb}

where we follow the multiplication rule

(ai ,b j )(ak ,bl ) = (ai ak ,b j bl )

Clearly the above rule satisfies the group axioms. Therefore we have a group
of order nanb called the direct (Kronecker) product group A ×B. Note that
the groups A and B operate in separate spaces and so we have concluded the
order of A ×B as nanb . Also, since they operate in separate spaces we can
safely say that the groups A and B commute i.e.

ai b j = b j ai

This construction will prove to be particularly useful in generating groups of
higher order.

1.2.6 Cosets and Coset decomposition

Let’s consider a group G of order n and one of its subgroups H of order h. Now
we pick any element Gi ∈G and premultiply it with the subgroup H . We obtain

H Gi = {H j Gi | j = 1, . . . ,h}

7
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This is called as a right coset3. Observe that the elements of any coset belong
to the group G by the closure property, and every element in a coset is unique
(recall the rearrangement theorem [3]). Thus the order of a coset is same as that
of the subgroup considered.

Theorem 4. Take any coset H G1 and pick another element say G2 from G which
doesn’t belong to the coset H G1. We then have

H G1 ∩H G2 =;

Proof. Let’s assume Hi G1 = H j G2 for some i , j = 1, . . . ,h. Then

G2 = H−1
j Hi G1

but H−1
j Hi belongs to H and so G2 is of the form HG1. This implies that G2 ∈

H G1 and contradicts our assumption that G2 doesn’t occur in H G1. Therefore
the two cosets are disjoint.

We shall now use this result to decompose the group G into some l disjoint
cosets. We start by taking the subgroup4 H itself, and pick an element G2 from
G which doesn’t belong to H , and make a right coset H G2. Now pick another
element G3 from G which isn’t present in the cosets created so far i.e. H , H G1

to make the next coset H G3. We follow this procedure recursively until we have
exhausted all the group elements and we obtain the (right) decomposition of G
as follows

G =H G1 +H G2 +·· ·+H Gl

The elements Gi are called coset representatives. Note that as per this decom-
position the order of G , n = hl i.e. the order of the subgroup H is a factor
of n. This is a powerful result which shall save us a good deal of work while
constructing finite groups.

Theorem 5 (Lagrange’s Theorem). If a group G of order n has a subgroup H of
order h, then n is necessarily an integer multiple of h.

The ratio l = n/h is called the index of H in G .

3Similarly we can define left and double cosets as Gi H and Gi H G j respectively.
4H is also a coset of the from H G1, where G1 ≡ E

8
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1.2.7 Isomorphism

If there exists a one-to-one correspondence between the elements G of a group
G and G ′ of a group G ′ i.e. for the multiplication Gi G j = Gk in G there is a
corresponding multiplication G ′

i G ′
j = G ′

k in G ′, then G and G ′ are said to be
isomorphic, and the same is represented as

G ∼=G ′

Mathematically, isomorphic groups have the same structure (recall the group
multiplication table) and are hence termed as identical (not equivalent!).

1.2.8 Homomorphism

Simply put, homomorphism is similar to isomorphism except here we have an
n-to-one mapping between the groups G and G ′ (i.e. a generalization of iso-
morphism). Let’s consider the onto mapping f : G → G ′ and so f (G) = G ′ 5. If
the relation

f (Gi G j ) = f (Gi ) f (G j )

holds where Gi ,G j ∈ G , we call f as a homomorphic mapping. Two groups
related by such a mapping are said to be homomorphic and we represent this
relation as follows

G ∼G ′

Some results

• f (Eg ) = Eg ′ , where Eg and Eg ′ are the identity elements of G and G ′ re-
spectively.

• f (G−1) = ( f (G))−1

Explanation. f (G−1G) = f (G−1) f (G) ⇔ f (G−1) = ( f (G))−1

1.2.9 The Kernel

Consider a homomorphic mapping f that maps a group G onto a group G ′.
The set K of elements that are mapped onto the unit element E ′ of G ′, is called
the kernel of the mapping f .

K = {G |G ∈G , f (G) = E ′ }
5The element G ′ of G ′ is said to be the image of some G of G , and G the inverse image of

G ′. If for every G ′ there exists an inverse image in G then f is an onto mapping.

9
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1.2.10 Conjugation

Elements A and B of a group G are conjugate with respect to G if

B =G AG−1 ⇔ A =G−1BG

where G ∈G . We now adopt a change of notation, where the conjugate of ga is

g̃a = g ga g−1 g ∈G

Consider the elements ga , gb ∈G ,

ga gb = gc

Now taking the conjugates of ga , gb ,

g̃a g̃b = (g ga g−1)(g gb g−1) = g gc g−1 = g̃c

And so we conclude that the transformation maps the multiplication table into
itself. Hence this mapping leaves the multiplication table invariant, and is a
special example of homomorphism known as automorphism. This is because
the mapping is inner as every element is generated by another element of the
same group.

Suppose the elements ga , gb commute then,

g̃a = gb ga g−1
b = gb g−1

b ga = ga

Since g̃a = ga , we say that ga is self conjugate.

1.2.11 Classes

A class C is defined as the set of conjugate elements of some group G ,

C : g̃ = ga g g−1
a , ∀ga ∈G

The conjugate class6 of a group element g is also denoted as [g ].

6The terms conjugate class and class are used interchangeably.

10
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Theorem 6. Consider the class

[gb] : g̃b = ga gb g−1
a , ∀ga ∈G

Now we pick an element say gc from G which doesn’t occur in the class [gb], and
construct the class,

[gc ] : g̃c = ga gc g−1
a , ∀ga ∈G

We then have
[gb]∩ [gc ] =;

Proof. Let’s assume that [gb]∩ [gc ] 6= ; i.e. there exists some group element
g ∈ [gb]∩ [gc ]. Now by the definition of conjugation we have,

gc = g1g g−1
1 g1 ∈G (1)

and
g = g2gb g−1

2 g2 ∈G (2)

From 1 & 2 we have

gc = g1(g2gb g−1
2 )g−1

1 = (g1g2)gb(g−1
2 g−1

1 ) = (g1g2)gb(g1g2)−1

This implies that gc belongs to the class [gb], which is a contradiction.

We follow the procedure used in the above theorem until we have exhausted
all the elements of the group G , resulting in the decomposition of the group G
into say some k < n classes, where n is the order of G .

Any Abelian group of order n has n classes, each containing one element and
the identity element is always in a class by itself, traditionally denoted as C1.

Finding the conjugacy classes of a group G is quite similar to coset decompo-
sition. However note that a group G can have more than one coset decompo-
sition as the same depends on the choice of subgroup of G . When finding the
conjugacy classes of G our construction doesn’t depend on the choice of our
elements gb , gc , . . . , and is consequently unique.

Theorem 7. Any group G is composed of a unique set of conjugate classes.

11
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1.2.12 Normal Subgroups7

Let H be a subgroup of a group G . If we transform every element of H with
respect to some G ∈G ,

GH G−1

we obtain another subgroup 8 of G and is called as a conjugate subgroup of H .
Now H is said to be normal if it is left invariant on conjugation i.e.

H =GH G−1

where G ∈G and is represented as

H /G

Aliter If the left coset GH and the right coset H G of a group G w.r.t. a sub-
group H are equal, H is a normal subgroup.

Remark. Like groups, normal subgroups are also composed of classes.

Note that most groups have normal subgroups however those that have
only the trivial normal subgroups, {E } and the group itself, are called simple
groups.

1.2.13 Simple groups

We now take a little detour to look at the types of simple groups, the so called
fundamental groups. This distinction was first made by Galois, the founder of
group theory who split groups into two types: simple groups and the remain-
ing. Classification of all simple groups has been one of the greatest triumphs
modern mathematics. Following are the types of simple groups9

• Cyclic groups of prime order Zp

• Alternating groups An for n ≥ 5

7a.k.a. Invariant subgroups, Normal divisor
8The 2 conditions for a subset of G to be a subgroup are satisfied as follows

(G H1G−1)(G H2G−1) =G(H1H2)G−1

and for any element G HG−1 we have a corresponding inverse G H−1G−1 in GH G−1

9of which we shall study only the first two types

12
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• Infinite families of groups of Lie type

• Twenty-six sporadic groups

In fact, Galois related the simplicity of the alternating group A5, to the impos-
sibility of finding a formula that solves the quintic10 equation by radicals. In
Section 1.2.15 we will see how simple groups are the building blocks of all finite
groups (and are hence called as fundamental).

1.2.14 Quotient group11

Recall the product group that we have already constructed. We now seek to
divide a group G 12 by its subgroup H (the divisor). This can be achieved by
dividing G into cosets w.r.t. the subgroup H i.e.

G /H = { aH , a ∈G }13

We need this newly group to satisfy the group axioms, and so we (intuitively)
define group multiplication as

(aH )(bH ) = cH

where a,b ∈G . This can turn out to be particularly problematic as (aH )(bH )
need not always produce a left coset. We overcome this by making the following
assumption

aH =H a

which happens to be precisely the condition for a subgroup H to be a normal
subgroup.
As a consequence we see that,

(aH )(bH ) = aH H b = aH b = abH

which gives a satisfactory (and unconventional) group structure. This group
has the identity element H 14, and any element aH has an inverse of the form

10function of the form g (x) = ax5 +bx4 + cx3 +d x2 +ex + f
11a.k.a. Factor group
12. . . to give a group whose elements are sets themselves!
13"Huhh? Why not a right coset?" Read on!
14the product group H ×H =H as any internal direct product always results in elements

that belong to the group itself (closure)

13
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a−1H .
By coset decomposition we have,

G = g1H + g2H +·· ·+ glH

where
G /H = {gi H | i = 1, . . . , l }

Observe that the group G /H is of the order l = n/h which also happens to be
the index of H .

Alternatively, we can represent the transformation of a group G into its cosets
in terms of a mapping π : G →G /H , defined as, π(g ) = gH . Also we have,

π(g1)π(g2) = (g1H )(g2H ) = g1g2H =π(g1g2)

and so π is a homomorphic mapping.

Theorem 8. H is a normal subgroup of a group G iff it is the kernel of some
isomorphism on G .

Proof. First we shall prove the forward implication. If H is the kernel of some
mapping say f , we have

f (H) = E

where H ∈H . Observe that,

f (G HG−1) = f (G) f (H) f (G−1) = f (G) f (G−1) = f (GG−1) = E

and so G HG−1 ∈H i.e. GH G−1 =H .

We now proceed to prove the backward implication. If H is a normal subgroup
we have,

H =GH G−1

Let’s consider a homomorphic mapping π : G →G /H , defined as

π(g ) = gH

We know that H is the identity element of E ′ G → G /H and gH = H only
for any g ∈H and so,

π(H) = HH =H = E ′

where H ∈H . Thus H is the kernel of the homomorphic mapping π.

14
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Theorem 9 (First Isomorphism Theorem). Let f : G → G ′ be a homomorphic
mapping defined as f (G) = G ′ and let K be its kernel. Let f̄ : G /K → G ′ be
another mapping defined as f̄ (GK ) = f (G), then f̄ is an isomorphic mapping,

G /K ∼=G ′

Figure 2: The first isomorphism theorem

Proof. Firstly we require f̄ to be homomorphic. Observe that,

f̄ (G1K ) f̄ (G2K ) = f (G1) f (G2) = f (G1G2) = f̄ (G1G2K )

i.e. f̄ is indeed homomorphic. Now if f̄ is not isomorphic, then for some
G1,G2 ∈G where G1 6=G2 we have,

f̄ (G1K ) = f (G1) = f (G2) = f̄ (G2K )

and so,
f (G1G−1

2 ) = f (G1) f (G−1
2 ) = f (G1)( f (G2))−1 = E ′

which means that G1G−1
2 ∈K or equivalently G1 ∈G2K ; a contradiction as the

cosets considered are disjoint. Therefore f̄ is isomorphic.

Theorem 10. The quotient group G /H is simple iff H is a maximal normal
subgroup of G .

Proof. Consider a normal subgroup A such that,

H EA EG

and so
A

H
E

G

H

15
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Now if H is a maximal normal subgroup, we have two possibilities, either A =
H or A = G which implies that either H or G /H respectively are the only
normal subgroups. Hence proved that G /H is simple.
For the reverse implication, if G /H is simple, it is implied that H and G /H
are the only normal subgroups. This is possible only if A =H or A = G i.e. if
H is a maximal normal subgroup.

1.2.15 Composition series

Let G be a group with a maximal normal subgroup H1. We now split G using
H1 into the quotient group G /H1. Consider H1 and its maximal normal sub-
group H2 and repeat the procedure we applied to G . If we do so continuously
we’ll end up with a simple subgroup Hk whose only normal subgroup (besides
itself) is the identity element of G . This yields the composition series,

G .H1.H2. · · ·.Hk .E

generating the quotient subgroups,

G /H1,H1/H2, . . . ,Hk

hence disintegrating G into its simple15 constituents. We see that simple sub-
groups are the fundamental building blocks using which we can build all other
finite groups.

Remark. A group can have more than one composition series as it depends on
the maximal normal subgroup chosen16. However, the number of steps to the
identity and the order of the quotient subgroups (called the composition in-
dices) are invariant features. It is to be noted that these features are not unique
to a group and hence we cannot use them to reconstruct a particular group.

In cases where all the quotient groups are cyclic with prime indices, the
group is said to be solvable or soluble.

15since we have taken the maximal normal subgroups
16A maximal normal subgroup is defined as a normal subgroup which is not completely

contained in any other proper normal subgroup. This doesn’t mean that it is a normal sub-
group of maximum possible order!

16
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1.2.16 Commutator subgroup17

We define the commutator of some a,b ∈G as

[a,b] = a−1b−1ab

Observe that [b, a] = [a,b]−1 and it can easily be seen that condition (1) is sat-
isfied, hence the product of all possible commutators form a subgroup G ′18

called the commutator subgroup.
On conjugating any element of this subgroup we see that,

�[a.b] = g (a−1b−1ab)g−1 = [ã, b̃]

i.e. any commutator subgroup is a normal subgroup.
Based on the characteristics of the commutator subgroup of a group, we have
the following classes of groups:

• (Perfect groups) G ′ is the same as G .

Remark. This doesn’t mean that perfect groups are necessarily simple!
However a non-Abelian simple group is perfect.

• (Abelian groups) G ′ = e

• G ′/G

1.2.17 Cauchy’s theorem

Theorem 11 (Cauchy’s theorem). Let G be a finite group and p be a prime. If p
divides the order of G then the group must contain an element of order p.

Sylow’s first theorem is basically a generalization of Cauchy’s theorem.

Theorem 12. Let p be a prime and P be a p-group of order pm then P has
subgroups19 of order pr for any r < m.

We can prove this using the fact that p-groups are solvable20

17a.k.a. Derived subgroup
18also denoted as G (1), [G ,G]
19and not element!
20However we won’t be proving this.

17
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1.2.18 Sylow’s Criteria

Let p be a prime number. We define p-group as a group whose order is a power
of p or equivalently the order of every group element is a power of p (from
Theorem 11). Let G be a group of order n = pmr where r is coprime to p. We
have the following theorems that place very strong restrictions of the possible
groups of a given order21

• Gp contains np p-groups, G i
p , i = 1, . . . ,np of order pm .

• All G i
p are isomorphic to each other, and are related by G

j
p = gG k

p g−1

where g ∈G .

• np is a divisor of r .

• np = 1 mod p

Consider the groups of order n = pq , where p, q are both prime. By Sylow’s
theorems we have np subgroups Gp of order p and nq subgroups Gq of order q .
From Theorem 14 these two subgroups must be cyclic. Also it is required that
np is a divisor of q i.e. np = 1 or q . However np = 1 mod p and without loss
of generality we can take p > q , so we must have np = 1. Similarly we say that
nq = 1 or p and since nq = 1 mod q , we have a possible solution nq = 1. Hence
we have

Zpq =Zp ×Zq

We have another solution nq = p if p = 1 mod q . p-groups can be abelian
(cyclic groups) or non-abelian (like the dihedral group D4).

* * *

21These shall prove to be extremely useful when we will construct various finite order
groups1

18
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2 FINITE GROUPS

Groups having a finite number of elements are known as finite groups. Any
finite group G can be presented using the following notation

G = 〈G|R1, . . . ,Rn〉

and is called as a22 presentation of G , where G is the set of generators of G and
R1, . . . ,Rn are relations from which any other relation in G can be deduced.

So far we have defined a group as finite on the basis of the number of elements it
contains. Can we say anything regarding the order of the elements themselves?
Theorem 13. The order of every element of a finite group G is finite.

Proof. Let g be an element in G , and so the set 〈g 〉 of all integral powers of g
must belong to G . However since G is of finite order, all the elements of 〈g 〉
cannot be distinct i.e. for some a,b ∈Z where a > b

g a = g b ⇔ g a−b = e

Since the above relation holds for a set of values of (a−b), and by definition the
order of g is min{a −b}.

We now look at some families of groups which we will subsequently use to
generate finite groups of lower (< 13) orders.

2.1 CYCLIC GROUPS

A group is cyclic if every group element can be expressed as a power of a single
element. We represent any nth order cyclic group as Zn . A cyclic group with
generator a can be presented as

Zn = 〈a |an = e〉

All cyclic groups are Abelian. (Why?)23

Theorem 14. All groups of prime order are cyclic.
22in general, there can be multiple presentations of a group
23Observe that g a g b = g b+a

19
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Proof. Let G be a group of prime order p and 〈g 〉 be the group generated by
some non identity element g in G . By Lagrange’s theorem any subgroup of G
will either be the identity element or a group of order p i.e. G itself. By our
assumption 〈g 〉 cannot be the identity element and so we have G = 〈g 〉.

Geometrically, cyclic groups can be interpreted as the set of rotational sym-
metries of a polygon.

Figure 3: Geometric visualization of the cyclic group Z3

Figure 4: Multiplication table of the cyclic group Z3

2.2 DIHEDRAL GROUPS

A dihedral group is defined as the group of rotational and mirror symmetries of
a polygon. The nth (n > 1) dihedral group Dn is a group order of 2n 24 and can
be presented as

Dn = 〈a,b|an = b2 = e, (ab)2 = e〉
24as it has 2n symmetries, n of which are the rotational symmetries and the remaining n

are the reflections about the n lines of symmetry.
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Geometrically, we interpret the generator a as the rotation symmetry that ro-
tates the n-sided polygon by 2iπ/n (i = 1, . . . ,n) radians about its centre and
interpret b as the reflection symmetry.

Figure 5: Geometric visualization of the dihedral group D3

Figure 6: Multiplication table of the dihedral group D3

If n ≥ 3 then Dn is non abelian i.e. D2 is the only abelian dihedral group.
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2.3 SYMMETRIC GROUPS

The group of all possible permutations of n items25 is called the symmetric
group and is denoted by Sn . Observe that the groups Zn ,Dn can be thought
of as groups of certain permutations of n objects. Consider a permutation on
n objects a1, . . . , an which shuffles them to give a sequence b1, . . . ,bn . We repre-
sent this permutation as (

1 2 · · · n
a1 a2 · · · an

)
The resultant of two permutation generates another permutation as follows(

a1 a2 · · · an

b1 b2 · · · bn

)(
b1 b2 · · · bn

c1 c2 · · · cn

)
=

(
a1 a2 · · · an

c1 c2 · · · cn

)
However we will use the more concise k-cycle notation for permutations. A k-
cycle is defined as a permutation that shuffles k < n objects into themselves.

Examples: Consider the set of permutations on four objects. We write(
1 2 3 4
2 3 4 1

)
∼ (

1 2 3 4
)

Take another four-cycle element(
1 2 3 4
4 3 1 2

)
∼ (

1 4 2 3
)

which is read as 1 → 4, 4 → 2, 2 → 3, 3 → 1. The following are a few other k-cycle
elements. (

1 2 3 4
2 3 1 4

)
∼ (

1 2 3
)(

4
)

[three-cycle](
1 2 3 4
2 1 3 4

)
∼ (

1 2
)(

3
)(

4
)

[two-cycle](
1 2 3 4
2 1 4 3

)
∼ (

1 2
)(

3 4
)

Observe that two-cycles simply swap two objects and henceforth we refer to
them as transpositions. Also note that one-cycles leave the sequence invariant
and hence can be omitted.

25The number of objects that a permutation acts on is called its degree.
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Theorem 15. Disjoint cycles commute.

Proof. Let a = (a1 · · ·an) and b = (b1 · · ·bm) be two disjoint cycles that act on a
set of n+m objects. Consider their product ab and any object x from the set. If
x belongs to the set {a1 · · ·an} then the cycle b will leave it invariant and so ab
will be nothing but a itself. Similarly for such an x, ba can be interpreted as the
operation of b on any transformation of a which will essentially yield another
object in the set {a1 · · ·an}. Thus the action of ba will be the same as that of
ab.

2.3.1 Cycle decomposition

Theorem 16. Every permutation can be uniquely resolved into cycles which op-
erate on mutually exclusive sets.

Proof. Consider a permutation on n objects and pick some object say k and
folllow the chain of transformations that occur in the sequence i.e. k → k1 →
··· → kr−1 → k. If r = n then the permutation is an n-cycle. However if r < n
then k goes back to into itself before we have completed one complete cycle
through the n objects and so we have n − r objects left unaccounted for. Now
chose another element say m from the leftover objects and again trace the se-
quence of transformations back to m as m → m1 →···→ ms−1 → m. If s = n−r
then we write the permutation as

(k k1 · · ·kr−1)(m m1 · · ·mn−r−1)

However if s < n − r then we again repeat this procedure until we have covered
the transformations of all n objects and arrive at the cycle decomposition

(k k1 · · ·kr−1)(m m1 · · ·ms−1) · · · (p p1 · · ·pw−1)

where r + s +·· ·+w = n.
Observe that the transformation that a permutation results in is a one-to-one
mapping hence the above cycles are self contained and disjoint26 Also as any
k-cycle is independent of the choice of the starting element from a particular
set of objects this decomposition is unique.

26Any ki ,m j cannot be transformed into the other.
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We can also decompose any permutation as a product of transpositions as
follows

(a1 a2 a3 · · ·an) = (a1a2)(a1a3) · · · (a1an) = (a1a2)(a2a3) · · · (an a1)

Note that this product is not commutative (because the sets aren’t mutually
exclusive!). Hence we see that any cycle in Sn can be generated by the transpo-
sitions (a1a2), (a2a3), . . . , (an a1) 27. This gives us a presentation of Sn

Sn = 〈(a1a2), (a2a3), . . . , (an a1)〉

If the number of transpositions are even (odd) then the permutation is said to be
even (odd). This can also be determined in terms of the parity of a permutation
which is defined as

sgnσ= (−1)n−c

where n is the number of objects on which the permutation is done and c the
number of disjoint cycles in the cycle decomposition. The parity of the permu-
tation is 1 for even permutations and -1 for odd permutations.

Theorem 17. All permutations are either even or odd.

Proof. Let γ be a permutation that can be decomposed into an even and odd
number of transpositions as follows

γ= (a1 · · ·am) = (b1 · · ·bn)

where ai ,b j are transpositions and m,n are odd and even respectively. It can
easily be shown that

γ−1 = (bn · · ·b1)

and so
γγ−1 = e = (a1 · · ·am)(bn · · ·b1)

i.e. the identity element e is odd which is a contradiction as the identity element
can only be obtained on performing an even number of transpositions.

27Another such set could be (a1a2), (a1a3), . . . , (a1an). Like all sets of generators these are
only some of the many possibilities!
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The set of all even permutations forms a subgroup of Sn of order28 n!/2
called the alternating group An .

Let G be a group with elements gi , i = 1, . . . ,n, we define the permutation of
degree n

Pa =
(

g1 g2 · · · gn

g1ga g2ga · · · gn ga

)
where ga ∈G . Notice the one-to-one correspondence between

ga gb = gc → PaPb = Pc

Also the group representation {Pa} of G is a subgroup of Sn and so we have the
following result:

Theorem 18 (Cayley’s theorem). Every group of finite order n is isomorphic to a
subgroup of the permutation group Sn .

The permutations Pa form a representation called the regular representa-
tion, where each Pa is a (n ×n) matrix acting on the n objects arranged as a
column matrix. Suppose we transform a permutation P

P = (p1 p2 · · ·pn)

by g we get,
g P g−1 = (g (p1) g (p2) · · ·g (pn))

i.e. conjugacy preserves the cycle decomposition of any permutation and this
can be verified by operating the transformed permutation g P g−1 on the trans-
formed object g (pi )

g P g−1g (pi ) = g P (pi ) = g (pi+1)

2.4 FINITE GROUPS OF LOW ORDER

We now construct the finite groups of order less than 13 and discuss some of
their representations.

28The number of even permutations will be

2
[ n

2

]∑
r=1

(
n

2r

)
= n!

2
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2.4.1 Groups of order 2

By the group axioms any group of order 2 will look like

{e, a}

and a2 is obviously equal to the identity element e, giving the multiplication
table

Z2 e a
e e a
a a e

Hence the cyclic group Z2 is the only group of order two. However doing this
was unnecessary. (Recall Theorem 14)

2.4.2 Groups of order 3

From Theorem 14 the cyclic group Z3 is the only possible group of order 3.

Z3 e a a2

e e a a2

a a a2 e
a2 a2 e a

Since constructing groups of prime order is quite straightforward we shall skip
the same for orders 5, 7, 11, 13.

2.4.3 Groups of order 4

One obvious possibility is the cyclic group Z4. Any order 4 group will be of the
form

{e, a1, a2, a3}

Suppose a1, a2 are the generators of such a group. Then we must have a3 =
a1a2 = a1a2 and a2

1 = a2
2 = e. A presentation of this group would be

〈a1, a2|a2
1 = a2

2 = e〉
which also happens to be a presentation of the dihedral group D2. Observe that
the direct product of the commuting (cyclic) groups (e, a1) and (e, a2) also gives
D2. Thus we have

D2 =Z2 ×Z2

with the multiplication table
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D2 e a1 a2 a1a2

e e a1 a2 a1a2

a1 a1 e a1a2 a2

a2 a2 a1a2 e a1

a1a2 a1a2 a1 a2 e

Since the multiplication table is symmetric about its diagonal the dihedral group
D2 is abelian and is also called as V , Vierergruppe or Klein’s four-group.

A possible representation of the dihedral group D2 are the following set of (2×2)
matrices (

1 0
0 1

)
,

(
1 0
0 −1

)
,

( −1 0
0 1

)
,

( −1 0
0 −1

)
Another representation involving functional dependence is as follows

f1(x) = x f2(x) =−x f3(x) = 1

x
f4(x) =−1

x

where f1, f2, f3, f4 are like operators, similar to the action of group elements on
a space.

2.4.4 Groups of order 6

The cyclic group Z6 and the direct product group Z2 ×Z3 are the two possible
abelian groups of order 6. Let a,b be the generators of the direct product group
i.e.

Z2 ×Z3 = {e, a, a2,b, ab, a2b}

such that a3 = b2 = e and ab = ba. Observe that (ab)3 = b and so ab is of
order 6, implying that the direct product group has a single generator, hence it
is cyclic.

Z2 ×Z3 =Z6

The direct product group needn’t always be cyclic.

Theorem 19. A direct product group Zm ×Zn is cyclic iff m,n are coprime.

Proof. Let a,b be the generators of the cyclic groups Zn ,Zm respectively. Con-
sider the direct product (a,b) then

(ab)k = e = eaeb
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where k is the order of ab and ea ,eb are the identity elements of the cyclic
groups Zn ,Zm . Since the two cyclic groups operate on independent spaces
we must have

ak = ea bk = eb

i.e. k = lcm(m,n). We have k = mn iff m,n are coprimes. Since mn also hap-
pens to be the order of the direct product group Zm ×Zn , we have ab as its
generator. Hence Zm ×Zn is cyclic.

Corollary 20. A direct product group Zm×Zn×·· ·×Zs is cyclic iff m,n, . . . , s are
coprime.

Any group of order 6 by Lagrange’s theorem must contain an order 3 ele-
ment say a and so {e, a, a2} will be a subgroup of the order 6 group. If this group
contains another element say b we get the following 6 elements

{e, a, a2,b,ba,ba2}

The element b will either be of order 2 or 3. If b3 = e then b2 must be equal to ba
or ba2 implies b = a or a2. However this is a contradiction as group elements
must be distinct. If b2 = e then ab = ba or ba2. If ab = ba then we get the cyclic
group Z6 again. Thus any other group must be non-abelian and must have
ab = ba2, giving us the dihedral group D3 with the following group presentation

D3 = 〈a,b|a3 = b2 = e, ba = a2b〉

Also observe that the permutation group S3 is another group of order 6. By
definition the dihedral group D3 is the set of 6 rotational and mirror symme-
tries of an equilateral triangle, which also happens to be the set of all possible
permutations of 3 objects.

D3 =S3

We now look at a representation of the dihedral group D3 interms of (3 × 3)
matrices. Consider a triangle with vertices A, B, C. Since b is of order 2 and a of
order 3 we draw the following relation

b = (A B) →
 0 1 0

1 0 0
0 0 1

 a = (A B C ) →
 0 1 0

0 0 1
1 0 0


where the group action is simply matrix multiplication.
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2.4.5 Groups of order 8

We have the obvious possibilities

Z8 Z2 ×Z4 D2 ×Z2 D4

however we shall systematically construct these groups inorder to avoid miss-
ing out on any possibilities.29 Suppose such a group has an element of order 8,
the only such group is the cyclic group Z8. Any other group of order 8 (which
doesn’t have an order 8 element) must have an element of order 2 (Theorem 11)
and can have an order 4 element. Suppose the group has an order 4 element,
say a then {e, a, a2, a3} will be its subgroup. If we consider another element b
that doesn’t belong to this subgroup we obtain the following 8 group elements

{e, a, a2, a3,b,ba,ba2,ba3}

Observe that any order 8 group is a Sylow’s two-group and so b can either be of
order 2 or 4. If b4 = e then b2 = e or a2. If b2 = e then ab = ba,ba2 or ba3. For
ab = ba we get the direct product group Z2 ×Z4. If ab = ba2 then

bab = a2

(bab)2 = e

ba2b = e

a2 = e (Contradiction.)

If ab = ba3 we get (ab)2 = e, generating the dihedral group D4.

If b2 = a2 then ab = ba,ba2 or ba3. Again if ab = ba we get the direct product
group Z2 ×Z4, and if ab = ba2 we run into a contradiction. Finally if ab = ba3

we get a new group, Q called the quaternion group and its presentation is

Q = 〈a,b |a4 = e, a2 = b2, aba = b〉

The last possibility is of a group that has neither an order 8 nor an order 4 ele-
ment and the only such group is the the direct product group Z2 ×Z2 ×Z2.30

29This will payoff!
30=D2 ×Z2
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2.4.6 Groups of order 9

Ofcourse following the procedure that we have used to construct groups so far
will be quite tedious. However the following theorem makes our job fairly sim-
ple.

Theorem 21. Any group of order p2 where p is a prime is abelian.

Hence we narrow down to two possibilities, the cyclic group and the direct
product group i.e. Z9 and Z3 ×Z3 respectively.

2.4.7 Groups of order 10

Observe that the order of this group is of the form n = pq where p, q are primes
and so we can use the result we had discussed under Sylow’s theorem. As 5 =
1 mod 2 there can be at most two order 10 groups, one of which is obviously
be the cyclic group Z10. Since the order is even the second possibility is the
dihedral group D5.

2.4.8 Groups of order 12

Again we list the obvious possibilities

Z12 Z3 ×Z4 Z2 ×Z6 D6 D3 ×Z2 D2 ×Z3 A4

However we have the following isomorphisms

Z2 ×Z6 =Z2 ×Z2 ×Z6 =D2 ×Z3

Z12 =Z4 ×Z3

Another not so obvious isomorphism is

D6 =D3 ×Z2

We know that D3 is the set of rotational and mirror symmetries of an equilat-
eral triangle, D6 is the same but for a regular hexagon and Z2 is essentially
reflection. In order to derive this homomorphism we consider some group
D = {e, s,r 2, sr 2,r 4, sr 4} and Z2 = {e,r 3} and where r is a rotation of 60° about
the centre of a hexagon and s is the reflection about the rotational axes of sym-
metry of a hexagon. Since

D3 ×Z2 = {e, s,r, sr,r 2, sr 2,r 4, sr 4,r 3, sr 3,r 5, sr 5}
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we get the required isomorphism.
Adding on to these there are two31 new non abelian groups of order 12. First

is the tetrahedral group T 32 which is isomorphic to the alternating group A4

and its presentation is

T = 〈a,b | s2 = r 3 = (sr )3 = e〉

having the multiplication table

Figure 7: Multiplication table of the tetrahedral group T

The alternating group A4 is generated by the even permutations of 4 objects.
Similarly the tetrahedral group T can be visualized as the set of rotational sym-
metries of a tetrahedron.

Figure 8: Geometric visualization of the tetrahedral group T

31technically only one as the other group is isomorphic to one of our obvious groups
32Actually this the pure rotational subgroup of the tetrahedral group Td which is the set of

all possible symmetries of a tetrahedron.
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This group can be generated by the (4×4) matrices

s = (12)(34) →


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 r = (123) →


0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1


hence generating the four-dimensional matrix representation of T .

The second one is the group Γ which belongs to the family of dicyclic groups
Q2n and it has the presentation

Γ= 〈a,b |a6 = e, b2 = a3,bab−1 = a−1〉

* * *
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Order N [NAbel ] Order N [NAbel ] Order N [NAbel ] Order N [NAbel ] Order N [NAbel ]
1 1[1] 41 1[1] 81 15[5] 121 2[2] 161 1[1]
2 1[1] 42 6[1] 82 2[1] 122 2[1] 162 55[5]
3 1[1] 43 1[1] 83 1[1] 123 1[1] 163 1[1]
4 2[2] 44 4[2] 84 15[2] 124 4[2] 164 5[2]
5 1[1] 45 2[2] 85 1[1] 125 5[3] 165 2[1]
6 2[1] 46 2[1] 86 2[1] 126 16[2] 166 2[1]
7 1[1] 47 1[1] 87 1[1] 127 1[1] 167 1[1]
8 5[3] 48 52[5] 88 12[3] 128 2328[15] 168 57[3]
9 2[2] 49 2[2] 89 1[1] 129 2[1] 169 2[2]

10 2[1] 50 2[2] 90 10[2] 130 4[1] 170 4[1]
11 1[1] 51 1[1] 91 1[1] 131 1[1] 171 5[2]
12 5[2] 52 5[2] 92 4[2] 132 10[2] 172 4[2]
13 1[1] 53 1[1] 93 2[1] 133 1[1] 173 1[1]
14 2[1] 54 15[3] 94 2[1] 134 2[1] 174 4[1]
15 1[1] 55 2[1] 95 1[1] 135 5[3] 175 2[2]
16 14[5] 56 13[3] 96 230[7] 136 15[3] 176 42[5]
17 1[1] 57 2[1] 97 1[1] 137 1[1] 177 1[1]
18 5[2] 58 2[1] 98 5[2] 138 4[1] 178 2[1]
19 1[1] 59 1[1] 99 2[2] 139 1[1] 179 1[1]
20 5[2] 60 13[2] 100 16[4] 140 11[2] 180 37[4]
21 2[1] 61 1[1] 101 1[1] 141 1[1] 181 1[1]
22 2[1] 62 2[1] 102 4[1] 142 2[1] 182 4[1]
23 1[1] 63 4[2] 103 1[1] 143 1[1] 183 2[1]
24 15[3] 64 267[11] 104 14[3] 144 197[10] 184 12[3]
25 2[2] 65 1[1] 105 2[1] 145 1[1] 185 1[1]
26 2[1] 66 4[1] 106 2[1] 146 2[1] 186 6[1]
27 5[3] 67 1[1] 107 1[1] 147 6[2] 187 1[1]
28 4[2] 68 5[2] 108 45[6] 148 5[2] 188 4[2]
29 1[1] 69 1[1] 109 1[1] 149 1[1] 189 13[3]
30 4[1] 70 4[1] 110 6[1] 150 13[2] 190 4[1]
31 1[1] 71 1[1] 111 2[1] 151 1[1] 191 1[1]
32 51[7] 72 50[6] 112 43[5] 152 12[3] 192 1543[11]
33 1[1] 73 1[1] 113 1[1] 153 2[2] 193 1[1]
34 2[1] 74 2[1] 114 6[1] 154 4[1] 194 2[1]
35 1[1] 75 3[2] 115 1[1] 155 2[1] 195 2[1]
36 14[4] 76 4[2] 116 5[2] 156 18[2] 196 17[4]
37 1[1] 77 1[1] 117 4[2] 157 1[1] 197 1[1]
38 2[1] 78 6[1] 118 2[1] 158 2[1] 198 10[2]
39 2[1] 79 1[1] 119 1[1] 159 1[1] 199 1[1]
40 14[3] 80 52[5] 120 47[3] 160 238[7] 200 52[6]

Table 1: Number of groups of orders up to 200
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3 REPRESENTATION THEORY OF FINITE GROUPS

Representations are realisation of groups on linear vector spaces. So far we have
seen that group action of any finite group of order n can be represented in terms
of (n×n) matrices (Section 2.3.1) and that group elements are nothing but oper-
ators. Simply put the representation theory of finite groups involves represent-
ing group operations in terms of matrices acting on some vector space. How-
ever the regular representation for practical purposes (relatively larger values
of n) can be difficult to manage. We now see how we can reduce them down to
smaller irreducible matrices.

3.1 HILBERT SPACES

Owing to their physical relevance we shall specifically work in Hilbert spaces.

Hilbert spaces are complex vector spaces with an inner product.

What does this mean? Consider a complex vector space V on which we define
the inner product 〈a,b〉 which gives rise to a norm as follows

‖x‖ =
√

〈x, x〉

A sequence of vectors xn , n = 1, . . . ,∞ in V is said to converge to a vector x in V
if

lim
n→∞‖xn −x‖ = 0

and we call ‖xn −x‖ as the norm of differences. If the norm of differences ap-
proaches zero we say that the vector space V is complete with respect to this
norm and hence V is a Hilbert space.

3.1.1 Bra-ket notation

While dealing with Hilbert spaces we shall use the bra-ket notation. In this
notation we denote the inner product 〈u, v〉 as

〈u|v〉

Here |v〉 is called a ket and 〈u| is called a bra. Essentially kets are just another
way to represent vectors and so belong to the space V . Bras on the other hand
belong to the space V ∗. Consider a vector v ∈ V and a linear function φ ∈ V ∗,
thenφ(v) denotes the action of the functionφ on the vector v and gives a num-
ber. In the bra-ket notation we denote this as
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v →|v〉
u →〈u|
φ→〈u|v〉

Bras and kets can also be viewed as row and column vectors respectively. Con-
sider two vectors a,b which can be written in terms of matrices as

a =


a1

a2
...

an

 b =


b1

b2
...

bn


and so 〈a| and |b〉 can be thought of as

〈
a

∣∣= (
a∗

1 , a∗
2 . . . , a∗

n

) ∣∣b
〉=


b1

b2
...

bn


and we define the outer product as

|b〉〈a|

which results in an (n ×n) matrix i.e. an operator.

Let V be an N -dimensional having the basis {ei }, i = 1, . . . , N . We write |ei 〉 as
|i 〉 and hence say that V is spanned by the orthonormal set of kets |i 〉. Then we
have

〈i | j 〉 = δi j

N∑
i=1

|i 〉〈i | = 1

where 1 is the (n ×n) unitary matrix or identity operator.

3.2 REDUCIBLE & IRREDUCIBLE REPRESENTATIONS

Consider a finite N -dimensional vector space V and let G be an order n group.
We represent the action of g ∈ G on this vector space by (N ×N ) non-singular
matrices which act as

|i 〉→ |i (g )〉 =Mi j | j 〉
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with
Mi j (g−1) =M−1

i j (g )

hence forming an N -dimensional representation R of G . Now if n = N then we
get the regular representation. If the representation R can be broken down into
the smallest possible non-trivial33 representations, we say that R is reducible.

Now suppose the representation R is reducible and can be reduced to an irre-
ducible representation R1 of G of dimension N1 < N that acts on a subspace
V1 of V spanned by |a〉, a = 1, . . . , N1. The space spanned by the remaining |m〉,
m = 1, . . . , N −N1 is the orthogonal complement V ′

1 of V . Hence the representa-
tion matrices of R will be of the form

M (g ) =
(

M1(g ) N (g )
0 M ′

1(g )

)
where M1(g ), N (g ) and M (g ) are N1×N1, N1×(N−N1) and (N−N1)×(N−N1)
matrices.

Justification Since M (g ) is a group representation we have

M (g1g2) =M (g1)M (g2)

then we see that this form is preserved under matrix multiplication as

M (g1g2) =
(

M1(g1)M1(g2) M1(g1)N (g2)+N (g1)M1(g2)
0 M ′

1(g1)M ′
1(g2)

)
and we get an N1 dimensional representation R1 as M1(g1g2) =M1(g1)M1(g2)
and an (N −N1) dimensional representation R′

1 as M ′
1(g1g2) =M ′

1(g1)M ′
1(g2).

Consider a vector |a〉 ∈V1 then we have(
M1(g ) N (g )

0 M ′
1(g )

)(
a
0

)
=

(
M1(g )a

0

)
and so any transformation by M1 leaves the subspace V1 invariant. However, if
we do the same for a vector |m〉 ∈V ′

1 we get(
M1(g ) N (g )

0 M ′
1(g )

)(
0
m

)
=

(
N (g )m
M ′

1(g )m

)
33The trivial representation being the one dimensional representation where every group

action is multiplication by 1 i.e. the action of the identity element, which every group has.
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the transformation results in a vector that belongs to V and so under this trans-
formation the complementary (N −N1) dimension subspace is not invariant.

If suppose N (g ) = 0 then the complementary (N −N1) dimension subspace is
also left invariant under all transformations of the group. This would mean that
the basis vectors |a〉, a = 1, . . . , N1 transform among themselves and so do the
basis vectors |m〉, m = 1, . . . , N1, hence the transformations don’t couple two
subspaces. In other words the vector space V is decomposed into the direct
sum of the independent subspaces V1 and V2 as

V =V1 ⊕V ′
1

and the representation R is decomposed as

R =R1 ⊕R′
1

and R is said to be fully reducible. In such a situation the representation ma-
trices will assume the block diagonal form

M (g ) =
(

M1(g ) 0
0 M ′

1(g )

)
We obtain this from by doing a change of basis which can be brought about by
multiplying M (g ) by (

1 0
N ′ 1

)
where N ′ = 1

n

∑
g M ′

1(g−1)N . We continue this process if R′
1 itself is reducible

and we end up with the decomposition

V =V1 ⊕·· ·⊕Vk

and
R =R1 ⊕·· ·⊕Rk

3.3 SCHUR’S LEMMAS

Lemma 1 (Schur’s First Lemma). For two given irreducible representations R1

and R2 of dimensions N1 and N2 respectively, a rectangular matrix S that sat-
isfies

S M1 =M2S

for any group element g ∈G must be either
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1. the zero matrix

2. a square matrix (N1 = N2) and detS 6= 0

Proof. Let the basis of the irreducible representations R1 and R2 be {|a1〉} and
{|a2〉} respectively with N1 > N2. Let S be the matrix of transformation of {|a1〉}
to {|a2〉}. We have

g |a1〉 =M1(g )|b1〉
where g ∈G and

|a2〉 =S |a1〉 |b2〉 =S |b1〉
then

g |a2〉 =S g |a1〉 = (S M1(g ))|b1〉 =M2(g )(S |b1〉) =M2(g )|b2〉
which means that the representation R1 is reducible if S 6= 0 which is a con-
tradiction. Hence, S = 0 if N1 6= N2.
Now if N1 = N2 and if |a1〉 and |a2〉 span the same Hilbert space then S 6= 0 and
R1 and R2 are said to be equivalent i.e.

M1 =S −1M2S

However if if |a1〉 and |a2〉 span different Hilbert spaces then S = 0.

Lemma 2 (Schur’s Second Lemma). A matrix S that commutes with all the
representation matrices M of a representation R of the group G i.e.

S M (g ) =M (g )S

where g ∈G , must be a multiple of the identity matrix I

S = cI

if R is irreducible.

Proof. Let λ ∈C be the eigenvalue of S such that

S v =λv

then
M (g )S v =λM (g )v ⇔S M (g ) =λM v

i.e. M v is also an eigenvector. This would mean that the subspace of eigen-
vectors of S is invariant under all transformations of the group G and so R is
reducible unless the subspace of eigenvectors spans the whole space. If they
span the entire space then S =λI .
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3.4 THE GREAT ORTHOGONALITY THEOREM

Theorem 22 (The Great Orthogonality Theorem). Matrices M in V of an N di-
mensional irreducible unitary34 representation R satisfy the following orthogo-
nality relations35

1

n

∑
g

Mi j (g )M∗
qp (g ) = 1

N
δi qδ j p

where n is the order of the group G and g ∈ G . If RA and RB are inequivalent
irreducible representations of dimensions NA and NB (NA 6= NB ) and represen-
tation matrices A and B respectively

1

n

∑
g

Ai j (g )B∗
qp (g ) = 0

The two orthogonality relations combined together give

1

n

∑
g

Ai j (g )B∗
qp (g ) = 1

NA
δABδi qδ j p

Proof. Let N be an arbitrary (NA ×NB ) matrix. We construct a matrix S as

S =∑
g

A (g )N B(g−1)

then observe that for some g ′ ∈G

A (g ′)S =∑
g

A (g ′)A (g )N B(g−1) =∑
g

A (g ′g )N B(g−1)

let g " = g ′g

A (g ′)S =∑
g

A (g ′)A (g )N B((g "(g ′)−1)−1) =
(∑

g "
A (g ")N B((g ")−1)

)
B(g ′) =S B(g ′)

and so S satisfies
A (g )S =S B(g )

for all g ∈G . Let N have N j p = 1 and all other entries as 0. If the two represen-
tations are inequivalent then S = 0 and by Schur’s first lemma we get∑

g
Ai j (g )Bqp (g−1) = 0 (3)

34M∗(g ) =M−1(g ) =M (g−1) and (M∗)qp = (M−1)pq
35Mab is the entry in the ath row and bth column of the representation matrices M .
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Now if RA =RB =R by Schur’s second lemma we have

S =∑
g

M (g )N M (g−1) = cI

again let N be an (N ×N ) having N j p = 1 and all other entries as 0, then∑
g

Mi j (g )Mpq (g−1) = cδi q

Now to determine c we let i = q and sum over i

N∑
i=1

∑
g

Mi j (g )Mpi (g−1) =∑
g

Mp j (g g−1) =∑
g
δ j p = nδ j p = c

thus
1

n

∑
g

Mi j (g )Mpq (g−1) = 1

N
δi qδ j p (4)

From (3) and (4) we get

1

n

∑
g

Ai j (g )Bpq (g−1) = 1

NA
δABδi qδ j p

and if the representations are unitary,

1

n

∑
g

Ai j (g )B∗
qp (g ) = 1

NA
δABδi qδ j p

* * *
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4 REPRESENTATIONS OF FINITE GROUPS

4.1 CHARACTER THEORY OF FINITE GROUPS

The character of an element g in a representation R is defined as the trace of
its representation matrix

χ(g ) = TrM (g )

Note that the character of g is not a unique function of g , because

χ(g1g g−1
1 ) = Tr(M (g1)M (g )M (g−1

1 )) = TrM (g )

i.e. all group elements of a class have the same character.

Theorem 23 (First Orthogonality of Characters). Characters of irreducible rep-
resentations satisfy the following orthogonality relation

1

n

∑
g
χA(g )χB (g ) = δAB

where χA and χB stand for the characters of irreducible representations RA and
RB , and the summation runs over all g group elements.

Proof. We substitute j = i and q = p in equation (4)∑
g

Ai i (g )Bpp (g−1) = n

NA
δABδi p

and sum over all i , p ∑
χA(g )χ(g−1) = nδAB

and if the representations are unitary then∑
χA(g )χ(g−1) =∑

χA(g )χ∗B (g ) =∑
χA(g )χB = nδAB

Suppose the number of classes in a group are nC where ni number of ele-
ments in the i th class Ci with character χi then we define the scalar product
{χA,χB } as

{χA,χB } ≡ 1

n

∑
g
χA(g )χB (g ) = 1

n

nC∑
i=1

niχ
(i )
A χ

(i )
B = δAB (5)
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If there were nR different irreducible representations such that the equation
(5), where A,B = 1, . . . ,nR implies that the nR vectors χA form an orthonormal
set in an nC dimensional vector space and so we must have

nR ≤ nC (6)

Consider a reducible representation R that is the sum of r A irreducible repre-
sentations RA, with characters

χ=∑
A

r AχA

where the multiplicity of RA is r A = {χ,χA}.

Test for irreducibility Consider the scalar product

{χ,χ} = ∑
A,B

r ArB {χA,χB } =∑
A

r 2
A

If the scalar product of the characters of a representation R is equal to 1 then it
is irreducible.

We now apply these formulæto the N dimensional regular representation36

Rreg to decompose it as follows

Rreg =
nR∑

A=1
r AR

where

n =
nR∑

A=1
r A NA (7)

with its characters expressed as

χ(i )
reg =

nR∑
A=1

r Aχ
(i )
A

In Section 2.3 we had seen how in the regular representation group action es-
sentially shuffles the N objects that are being dealt with (here the objects are

36Recall that the representation of all possible permutations of n objects is the regular
representation i.e. Rreg contains all irreducible representations RA .
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vectors). Observe that besides the identity matrix all other representation ma-
trices have all diagonal entries as 0, i.e. χ(1)

reg = N (= n) and χ(i )
reg = 0 for i 6= 1.

Hence the multiplicity r A can be determined as

r A = {χreg,χA} = 1

n

nC∑
i=1

niχ
(i )
regχ

(i )
A

as χ(i )
reg = 0 for i 6= 1, we take i = 1 and we know that n1 = 1

1

n

nC∑
i=1

niχ
(i )
regχ

(i )
A = δAB = 1

n
n1χ

(i )
A χ(i )

A = 1

n
nχ(i )

A =χA(e)

but the character of the unit element of a representation is the dimension of the
representation

χA = NA

thus r A = NA and so have the following result

Corollary 24. The multiplicity of any irreducible representation in the regular
representation is equal to its dimension.

As a consequence the equation (7) can now be written as

n =
nR∑

A=1
N 2

A

Theorem 25 (Second Orthogonality of Characters). Characters of irreducible
representations satisfy the following orthogonality relation as well

1

n

nR∑
A=1

χ(i )
A χ

( j )
A = 1

ni
δi j

Proof. We define

Gi ≡ 1

ni

ni∑
l=1

gl

where g1, . . . , gni are elements of a class Ci . Observe that

G̃i =Gi

{Gi } also forms a class. Also

Gi G j =
∑
k

ci j kGk (8)
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where the ci j k are called as class coefficients. We also define

N (i )
A ≡ 1

ni
A (Gi ) = 1

ni

∑
g∈Ci

A (g )

and
Tr(N (i )

A ) =χ(i )
A (9)

then we have
A (g )N (i )

A =N (i )
A A (g )

where g ∈Ci and since RA is irreducible, by Schur’s second lemma

N (i )
A = cI

Now taking the trace of both sides,

Tr

(
1

ni

∑
g∈Ci

A (g )

)
=χ(i )

A = c Tr(I ) = cχ(1)
A

we get,

N (i )
A = χ(i )

A

χ(1)
A

I (10)

From equation (8)
N (i )

A N
( j )

A =∑
k

ci j kN (k)
A

and from equation (10)
χ(i )

A χ
( j )
A =χ(1)

A

∑
k

ci j kχ
(k)
A

also we know that

χ(i )
r eg =

nR∑
A=1

r Aχ
(i )
A =

nR∑
A=1

dAχ
(i )
A =

nR∑
A=1

χ(1)
A χ(i )

A

so
nR∑

A=1
χ(i )

A χ
( j )
A =

nR∑
A=1

χ(1)
A

∑
k

ci j kχ
(k)
A =∑

k
ci j k

nR∑
A=1

χ(1)
A χ(i )

A =∑
k

ci j kχ
(k)
r eg

however χ(k)
r eg vanishes for all k 6= 1 and so

nR∑
A=1

χ(i )
A χ

( j )
A = ci j 1n (11)
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Now in order to determine ci j 1 we substitute k = 1 in equation (8)

Gi G j = ci j 1G1 = ci j 1

and G1 is the unit element which can only be obtained if C j contains the inverse
of at least one element of the class Ci . However this is only possible if every
element in Ci has a corresponding inverse in C j i.e. (ni = n j and j = i ).

Gi G j = 1

n2
i

ni∑
l=1

gl

ni∑
l=1

g l =
1

ni
e + . . .

and
χ(i )

A =χ(i )
A

Thus combining the above equations with equation (11) we get

1

n

nR∑
A=1

χ(i )
A χ

( j )
A = 1

ni
δi j (12)

If there were nR different irreducible representations such that the equation
(12), where i , j = 1, . . . ,nC implies that the nC vectors χ(i )

A form an orthonormal
set in an nR dimensional vector space and so we must have

nC ≤ nR

However from (6) we have
nC = nR

Corollary 26. The number of irreducible representations of a finite group is equal
to its number of classes.

4.2 CHARACTER TABLE

Hence we can deduce a groups representations once we know its classes. The
information is usually displayed in a character table, which lists the values of
the characters for the different representations.

45



Group Theory Shreya Shrivastava

4.2.1 Zn character table

Since Zn is abelian, it has n one dimensional classes Ci , i = 1, . . . ,n (Section
1.2.11). Hence all its elements can be represented by (1×1) matrices i.e. com-
plex numbers. As the presentation

Zn = 〈a |an = e〉

requires a to be an nth root of unity ωn , we have

a = 1, e2iπi /n , . . . , e(n−1)2πi /n

and we assign ak = ek2πi /n . Now suppose the first irreducible representation
matrix say A = 1, similarly B = x and so on up till xn−1, giving us the n rep-
resentation matrices with characters χ0, . . . ,χn−1, hence we get the character
table

k 0 1 2 . . . n −1
|Ci | 1 1 1 . . . 1
χ0 1 1 1 . . . 1
χ1 1 ωn ω2

n . . . ωn−1
n

χ2 1 ω2
n ω4

n . . . ω2(n−1)
n

...
...

...
...

...
χn−1 1 ωn−1

n ω2(n−1)
n . . . ω(n−1)(n−1)

n

* * *
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