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1 Introduction

This report provides a summary of everything we covered related to Quantum Mechanics and an
introduction to Quantum Computing. We will begin with some experiments which show the big
difference between classical and quantum theories. Then we will cover some topics in Quantum
Mechanics and then move to Cbits and Qubits and their differences, and some simple Quantum
algorithms. Hopefully, throughout this report, one will be able to gain a good knowledge of Quan-
tum Mechanics.

Quantum mechanics is a branch of physics that explores physical world at most fundamental
level. At this level particle behave differently from classical world taking more than one state at
the same time and interacting with other particles that are very far away. Phenomena like super-
position and entanglement take place. Classical physics is still used in much of modern science
and technology. However, towards the end of the 19th century, scientists discovered phenomena in
both the large (macro) and the small (micro) worlds that classical physics could not explain.

Many aspects of quantum mechanics are counter intuitive and can seem paradoxical because
they describe behavior quite different from that seen at larger scales. In the words of quantum
physicist Richard Feynman, quantum mechanics deals with nature as She is—absurd.Even though
there are many things that are highly confusing about quantum mechanics,the nice thing is that
it’s relatively easy to apply quantum mechanics to a physical system to figure out how it behaves.

For example, the uncertainty principle of quantum mechanics means that the more closely one
pins down one measurement (such as the position of a particle), the less accurate another comple-
mentary measurement pertaining to the same particle (such as its speed) must become.

Another example is entanglement, in which a measurement of any two-valued state of a particle
(such as light polarized up or down) made on either of two entangled particles that are very far
apart causes a subsequent measurement on the other particle to always be the other of the two
values (such as polarized in the opposite direction).

There are problems that even the most powerful classical computers are unable to solve because
of their scale or complexity. Quantum computers may be uniquely suited to solve some of these
problems because of their inherently quantum properties.
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Quantum Mechanics 2 STERN-GERLACH EXPERIMENTS

2 Stern-Gerlach Experiments

2.1 Stern-Gerlach Experiment

In 1922 Otto Stern and Walther Gerlach performed a experiment in the history of quantum me-
chanics. In its simplest form, the experiment consisted of an oven that produced a beam of neutral
atoms, a region of space with an inhomogeneous magnetic field, and a detector for the atoms, as
depicted in Figure 1. Stern and Gerlach used a beam of silver atoms and found that the beam was
split into two in its passage through the magnetic field. One beam was deflected upwards and one
downwards in relation to the direction of the magnetic field gradient.

We expect such an interaction if the particle possesses a magnetic moment µ. So the potential
energy of this interaction will result in a force and deflects the beam in direction of magnetic field
gradient.

Figure 1: Stern-Gerlach experiment to measure the spin component of neutral particles along the
z-axis. The magnet cross section at right shows the inhomogeneous field used in the experiment.

The deflection of the beam in the Stern-Gerlach experiment is thus a measure of the component
(or projection) Sz of the spin along the z-axis, which is the orientation of the magnetic field gradient.

If we assume that the 5s electron of each atom has the same magnitude |S| of the intrinsic
angular momentum or spin, then classically we would write the z-component as Sz = |S| cos θ,
where u is the angle between the z-axis and the direction of the spin S. In the thermal environment
of the oven, we expect a random distribution of spin directions and hence all possible angles u.
Thus we expect some continuous distribution (the details are not important) of spin components
from Sz = −|S| to Sz = +|S| , which would yield a continuous spread in deflections of the silver
atomic beam. Rather, the experimental result that Stern and Gerlach observed was that there are
only two deflections, indicating that there are only two possible values of the z-component of the
electron spin. The magnitudes of these deflections are consistent with values of the spin component
of

Sz = ±~
2
,

where ~ is Planck’s constant h divided by 2π.
This result of the Stern-Gerlach experiment is evidence of the quantization of the electron’s

spin angular momentum component along an axis. This quantization is at odds with our classical
expectations for this measurement. The factor of 1

2 in Szleads us to refer to this as a spin- 12
system.

In Figure 2, the input and output beams are labeled with a new symbol called a ket. We
use the ket |+〉 as a mathematical representation of the quantum state of the atoms that exit the
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upper port corresponding to Sz = +~/2. The lower output beam is labeled with the ket |−〉, which
corresponds to Sz = −~/2, and the input beam is labeled with the more generic ket |ψ〉. The kets
are representations of the quantum states. They are used in mathematical expressions and they
represent all the information that we can know about the state.

Figure 2: Simplified schematic of the Stern-Gerlach experiment, depicting a source of atoms, a
Stern-Gerlach analyzer, and two counters.

Postulate 1

The state of a quantum mechanical system, including all the information you can know
about it, is represented mathematically by a normalized ket |ψ〉.

2.1.1 Experiment 1

The atomic beam coming into the first Stern-Gerlach analyzer is split into two beams at the output,
just like the original experiment. Now instead of counting the atoms in the upper output beam,
the spin component is measured again by directing those atoms into the second Stern-Gerlach
analyzer. The result of this experiment is that no atoms are ever detected coming out of the lower
output port of the second Stern-Gerlach analyzer. All atoms that are output from the upper port
of the first analyzer also pass through the upper port of the second analyzer.Thus we say that when
the first Stern-Gerlach analyzer measures an atom to have a z-component of spin Sz = +~/2, then
the second analyzer also measures Sz = +~/2 for that atom. This result is not surprising, but it
sets the stage for results of experiments to follow.

Figure 3: Experiment 1 measures the spin component along the z-axis twice in succession.

5
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Thus our main focus in Experiment 1 is what happens at the second analyzer because we
know that any atom entering the second analyzer is represented by the |+〉 ket prepared by the
first analyzer. All the experiments we will describe employ a first analyzer as a state preparation
device, though the SPINS program has a feature where the state of the atoms coming from the
oven is determined but unknown, and the user can perform experiments to determine the unknown
state using only one analyzer in the experiment.

2.1.2 Experiment 2

The second experiment is shown in Figure 4 and is identical to Experiment 1 except that the
second Stern-Gerlach analyzer has been rotated by 90° to be aligned with the x-axis. Now the
second analyzer measures the spin component along the x-axis rather the z-axis. Atoms input to
the second analyzer are still represented by the ket |+〉. The result of this experiment is that atoms
appear at both possible output ports of the second analyzer. Atoms leaving the upper port of the
second analyzer have been measured to have Sz = +~/2, and atoms leaving the lower port have
the Sz = −~/2.

Figure 4: Experiment 2 measures the spin component along the z-axis and then along the x-axis.

A few items are noteworthy about this experiment. First, we notice that there are still only two
possible outputs of the second Stern-Gerlach analyzer. The fact that it is aligned along a different
axis doesn’t affect the fact that we get only two possible results for the case of a spin-1/2 particle.
Second, it turns out that the results of this experiment would be unchanged if we used the lower
port of the first analyzer.This probabilistic nature is at the heart of quantum mechanics.

2.1.3 Experiment 3

Experiment 3, extends Experiment 2 by adding a third Stern-Gerlach analyzer aligned along the
z-axis. Atoms entering the third analyzer have been measured by the first Stern-Gerlach analyzer
to have spin component up along the z-axis, and by the second analyzer to have spin component
up along the x-axis. The third analyzer then measures how many atoms have spin component up
or down along the z-axis.

Classically, one would expect that the final measurement would yield the result spin up along
the z-axis, because that was measured at the first analyzer.This result demonstrates another key
feature of quantum mechanics: a measurement disturbs the system. The second analyzer has
disturbed the system such that the spin component along the z-axis does not have a unique value,
even though we measured it with the first analyzer.
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Figure 5: Experiment 3 measures the spin component three times in succession.

2.1.4 Experiment 4

Experiment 4a is identical to Experiment 3. In Experiment 4b, the upper beam of the second
analyzer is blocked and the lower beam is sent to the third analyzer. In Experiment 4c, both
beams are combined with our new method and sent to the third analyzer. It should be clear from
our previous experiments that Experiment 4b has the same results as Experiment 4a. We now ask
about the results of Experiment 4c. If we were to use classical probability analysis, then Experiment
4a would indicate that the probability for an atom leaving the first analyzer to take the upper path
through the second analyzer and then exit through the upper port of the third analyzer is 25%,
where we are now referring to the total probability for those two steps. Likewise, Experiment 4b
would indicate that the total probability to take the lower path through the second analyzer and
exit through the upper port of the third analyzer is also 25%. Hence the total probability to exit
from the upper port of the third analyzer when both paths are available, which is Experiment 4c,
would be 50%, and likewise for the exit from the lower port.

However, the quantum mechanical result in Experiment 4c is that all the atoms exit the upper
port of the third analyzer and none exits the lower port. The atoms now appear to “remember”
that they were initially measured to have spin up along the z-axis. By combining the two beams
from the second analyzer, we have avoided the quantum mechanical disturbance that was evident
in Experiments 3, 4a, and 4b. The result is now the same as Experiment 1, which means it is as
if the second analyzer is not there.

To see how odd this is, look carefully at what happens at the lower port of the third analyzer.
In this discussion, we refer to percentages of atoms leaving the first analyzer, because that analyzer
is the same in all three experiments. In Experiments 4a and 4b, 50% of the atoms are blocked after
the middle analyzer and 25% of the atoms exit the lower port of the third analyzer. In Experiment
4c, 100% of the atoms pass from the second analyzer to the third analyzer, yet fewer atoms come
out of the lower port. In fact, no atoms make it through the lower port! So we have a situation
where allowing more ways or paths to reach a counter results in fewer counts. It is as if you opened
a second window in a room to get more sunlight and the room went dark!

2.2 Quantum State Vectors

Postulate 1 of quantum mechanics stipulates that kets are to be used for a mathematical description
of a quantum mechanical system. These kets are abstract entities that obey many of the rules you
know about ordinary spatial vectors. Hence they are called quantum state vectors.Quantum
state vectors are part of a vector space that we call a Hilbert space. The dimensionality of the
Hilbert space is determined by the physics of the system at hand. In the Stern-Gerlach example,
the two possible results for a spin component measurement dictate that the vector space has only
two dimensions. That makes this problem mathematically as simple as it can be, which is why we
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Figure 6: Experiment 4 measures the spin component three times in succession and uses (a and
b) one or (c) two beams from the second analyzer.

have chosen to study it. Because the quantum state vectors are abstract, it is hard to say much
about what they are, other than how they behave mathematically and how they lead to physical
predictions.

Continuing the mathematical analogy between spatial vectors and abstract vectors, we require
that these same properties (at least conceptually) apply to quantum mechanical basis vectors. For
the Sz measurement, there are only two possible results, corresponding to the states |+〉 and |−〉,
so these two states comprise a complete set of basis vectors. This basis is known as the Sz basis.
We focus on this basis for now and refer to other possible basis sets later. The completeness of the
basis kets |±〉 implies that a general quantum state vector |ψ〉 is a linear combination of the two
basis kets:

|ψ〉 = a |+〉+ b |−〉 ,

where a and b are complex scalar numbers multiplying each ket. This addition of two kets yields
another ket in the same abstract space. The complex scalar can appear either before or after the
ket without affecting the mathematical properties of the ket(i.e.,a |+〉 = |+〉 a).It is customary to
use the Greek letter ψ (psi) for a general quantum state. You may have seen ψ(x) used before as
a quantum mechanical wave function. However, the state vector or ket |ψ〉 is not a wave function.
Kets do not have any spatial dependence as wave functions do.

8
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A similar approach is taken in quantum mechanics. The analog to the complex conjugated
vector of classical physics is called a bra in the Dirac notation of quantum mechanics. Thus
corresponding to a general ket |ψ〉 there is a bra, or bra vector, which is written as 〈ψ| . If a
general |ψ〉 is specified as |ψ〉 = a |+〉+ b |−〉, then the corresponding bra 〈ψ| is defined as

〈ψ| = a∗ 〈+|+ b∗ 〈−|

where the basis bras 〈+| and 〈−| correspond to the basis kets |+〉 and |−〉, respectively, and the
coefficients a and b have been complex conjugated. The scalar product in quantum mechanics is
defined as the product of a bra and a ket taken in the proper order—bra first, then ket second:

(〈bra|)(|ket〉).

When the bra and ket are combined together in this manner, we get a bracket (bra ket) is written
in shorthand as

〈bra|ket〉

Consider the general state vector . Take the inner product of this ket |ψ〉 = a |+〉+ b |−〉 with the
bra 〈+| and obtain

〈+|ψ〉 = 〈+| (a |+〉+ b |−〉)
= 〈+|a|+〉+ 〈+|b|−〉
= a 〈+|+〉+ b 〈+|−〉
= a

(1)

using the properties that inner products are distributive and that scalars can be moved freely
through bras or kets. Likewise, you can show that 〈−|ψ〉 = b. Hence the coefficients multiplying
the basis kets are simply the inner products or projections of the general state |ψ〉 along each basis
ket, albeit in an abstract complex vector space rather than the concrete three-dimensional space
of normal vectors.

〈ψ|+〉 = 〈+|a∗|+〉+ 〈−|b∗|+〉
= a∗ 〈+|+〉+ b∗ 〈−|+〉
= a∗

(2)

Thus, we see that an inner product with the states reversed results in a complex conjugation of
the inner product:

〈+|ψ〉 = 〈ψ|+〉∗

This important property holds for any inner product. For example, the inner product of two
general states is

〈φ|ψ〉 = 〈ψ|φ〉∗

Now we come to a new mathematical aspect of quantum vectors that differs from the use of vectors
in classical mechanics. The rules of quantum mechanics (postulate 1) require that all state vectors
describing a quantum system be normalized, not just the basis kets.

We now have a prescription for predicting the outcomes of the experiments we have been
discussing.This basic rule of probabilities is why the rules of quantum mechanics require that all
state vectors be properly normalized before they are used in any calculation of probabilities.

Postulate 4(Spin-1/2 system)

The probability of obtaining the value ±~/2 in a measurement of the observable Sz on a
system in the state |ψ〉 is

P± = | 〈±|ψ〉 |2,

where |±〉 is the basis of ket of Sz corresponding to the result ±~/2.

9
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Figure 7: Generic depiction of the quantum mechanical measurement of observable A.

Because the quantum mechanical probability is found by squaring an inner product, we refer
to an inner product,〈+|ψ〉 for example, as a probability amplitude or sometimes just an am-
plitude; much like a classical wave intensity is found by squaring the wave amplitude. Note that
the convention is to put the input or initial state on the right and the output or final state on the
left: 〈out|in〉, so one would read from right to left in describing a problem. Because the probability
involves the complex square of the amplitude, and 〈out|in〉 = 〈in|out〉∗, this convention is not
critical for calculating probabilities. Nonetheless, it is the accepted practice and is important in
situations where several amplitudes are combined.

2.3 General Quantum Systems

The machinery we have developed for spin-1/2 systems can be generalized to other quantum sys-
tems. For example, if an observable A yields quantized measurement results an for some finite
range of n, then we generalize the schematic depiction of a Stern-Gerlach measurement to a mea-
surement of the observable A, as shown in Figure The observable A labels the measurement device
and the possible results a1, a2, a3, etc. label the output ports. The basis kets corresponding to the
results an are then |an〉. The mathematical rules about kets in this general case are

〈ai|aj〉 = δij orthonormality (3)

|ψ〉 =
∑
i

〈ai|ψ〉 |ai〉 completeness (4)

where we use the Kronekar delta

δij =

{
0 i 6= j

1 i = j
(5)

to express the orthonormality condition compactly. In this case, the generalization of postulate 4
says that the probability of a measurement of one of the possible results an is

Pan = | 〈an|ψin〉 |2

10
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3 Operators and Measurement

3.1 Operators,Eigen values and Eigen Vectors

The mathematical theory we developed in Chapter 2 used only quantum state vectors. We said
that the state vector represents all the information we can know about the system and we used
the state vectors to calculate probabilities. With each observable Sx, Sy , and Sz we associated a
pair of kets corresponding to the possible measurement results of that observable. The observables
themselves are not yet included in our mathematical theory, but the distinct association between
an observable and its measurable kets provides the means to do so.

The role of physical observables in the mathematics of quantum theory is described by the two
postulates listed below. Postulate 2 states that physical observables are represented by mathe-
matical operators, in the same sense that physical states are represented by mathematical vectors
or kets (postulate 1). An operator is a mathematical object that acts or operates on a ket and
transforms it into a new ket, for example = A |ψ〉 = |φ〉. However, there are special kets that are
not changed by the operation of a particular operator, except for a possible multiplicative constant,
which we know does not change anything measurable about the state. An example of a ket that
is not changed by an operator would be A |ψ〉 = a |φ〉. Such kets are known as eigenvectors of
the operator A and the multiplicative constants are known as the eigenvalues of the operator.
These are important because postulate 3 states that the only possible result of a measurement of
a physical observable is one of the eigenvalues of the corresponding operator.

Postulate 2

A physical observable is represented mathematically by an operator A that acts on kets.

Postulate 3

The only possible result of a measurement of an observable is one of the eigenvalues an of
the corresponding operator A.

We now have a mathematical description of that special relationship we saw in Chapter 2
between a physical observable,Sz say, the possible results ±~/2, and the kets |±〉 corresponding to
those results. This relationship is known as the eigenvalue equation and is depicted in Figure
8 for the case of the spin up state in the z-direction. In the eigenvalue equation, the observable
is represented by an operator, the eigenvalue is one of the possible measurement results of the
observable, and the eigenvector is the ket corresponding to the chosen eigenvalue of the operator.
The eigenvector appears on both sides of the equation because it is unchanged by the operator.

The eigenvalue equations for the Sz operator in a spin-1/2 system are:

Sz |+〉 = +
~
2
|+〉

Sz |−〉 = −~
2
|−〉

(6)

These equations tell us that +~/2 is the eigenvalue of Sz corresponding to the eigenvector |+〉
and −~/2 is the eigenvalue of Sz corresponding to the eigenvector |−〉. Equation(6) are sufficient
to define how the Sz operator acts mathematically on kets. However, it is useful to use matrix
notation to represent operators. To determine the matrix representing the operator Sz,assume the
most general form form for a 2× 2 matrix

11
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Figure 8: Eigenvalue equation for the spin up state.

Sz =

(
a b
c d

)
(7)(

a b
c d

)(
1
0

)
= +

~
2

(
1
0

)
(8)(

a b
c d

)(
0
1

)
= −~

2

(
0
1

)
(9)

Solving equations 8,9 results in:

a = +
~
2

b = 0 (10)

c = 0 d = −~
2

(11)

Thus the matrix representation of the operator Sz is

Sz =

(
~/2 0
0 −~/2

)
=

~
2

(
1 0
0 −1

)
(12)

Note two important features of this matrix: (1) it is a diagonal matrix—it has only diagonal
elements—and (2) the diagonal elements are the eigenvalues of the operator, ordered in the same
manner as the corresponding eigenvectors. In this example, the basis used for the matrix represen-
tation is that formed by the eigenvectors |±〉 of the operator Sz. That the matrix representation
of the operator in this case is a diagonal matrix is a necessary and general result of linear algebra
that will prove valuable as we study quantum mechanics. In simple terms, we say that an operator
is always diagonal in its own basis. This special form of the matrix representing the operator is
similar to the special form that the eigenvectors |±〉 take in this same representation—the eigen-
vectors are unit vectors in their own basis. These ideas cannot be overemphasized, so we repeat
them:

An operator is always diagonal in its own basis.

Eigenvectors are unit vectors in their own basis.

3.2 Matrix Representation of Operators

Now consider how matrix representation works in general. Consider a general operator A describing
a physical observable (still in the two-dimensional spin-1/2 system), which we represent by the

12
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general matrix

A =

(
a b
c d

)
(13)

in the Sz basis. The operation of A on the basis ket |+〉 yields

A |+〉 =

(
a b
c d

)(
1
0

)
=

(
a
c

)
(14)

The inner product of this new ket A |+〉 with thr ket |+〉 (converted to a bra following the rules)
results in

〈+|A|+〉 =
(
1 0

)(a
c

)
= a. (15)

which serves to isolate one of the elements of the matrix. Hence an individual element such as
〈+|A|+〉 or 〈+|A−〉is generally referred to as a matrix element. This “sandwich” of a bra, an
operator, and a ket

〈bra|OPERATOR|ket〉

plays an important role in many quantum mechanical calculations. Even in cases where the bra
and ket are not basis kets, such as in 〈ψ|A|φ〉, we still refer to this as a matrix element.

Figure 9: (a) Schematic diagram of a generic matrix element. (b) Schematic diagram of the row
and column labeling convention for matrix elements

3.3 Diagonalization of Operators

In the case of the operator Sz above, we used the experimental results and the eigenvalue equations
to find the matrix representation of the operator. It is more common to work the other way. That
is, one is given the matrix representation of an operator and is asked to find the possible results
of a measurement of the corresponding observable. According to the third postulate, the possible
results are the eigenvalues of the operator, and the eigenvectors are the quantum states representing
them. In the case of a general operator A in a two-state system, the eigenvalue equation is

A |an〉 = an |an〉

where we have labeled the eigenvalues an and we have labeled the eigenvectors with the corre-
sponding eigenvalues. In matrix notation, the eigenvalue equation is(

A11 A12

A21 A22

)(
cn1
cn2

)
= an

(
cn1
cn2

)
(16)

where cn1 and cn2 are the unknown coefficients of the eigenvector |an〉 corresponding to the eigen-
value an . This matrix equation yields the set of homogeneous equations

(A11 − an)cn1 +A12cn2 = 0

A21cn1 + (A22 − an)cn2 = 0.

13



Quantum Mechanics 3 OPERATORS AND MEASUREMENT

The rules of linear algebra dictate that a set of homogeneous equations has solutions for the
unknowns cn1 and cn2 only if the determinant of the coefficients vanishes:∣∣∣∣A11 − an A12

A21 A22 − an

∣∣∣∣ = 0 (17)

It is common notation to use the symbol I for the eigenvalues, in which case this equation is

det(A− λI) = 0

This procedure of finding the eigenvalues and eigenvectors of a matrix is known as diagonalization
of the matrix and is the key step in many quantum mechanics problems. Generally, if we find a new
operator, the first thing we do is diagonalize it to find its eigenvalues and eigenvectors. However,
we stop short of the mathematical exercise of finding the matrix that transforms the original matrix
to its new diagonal form. This would amount to a change of basis from the original basis to a new
basis of the eigenvectors we have just found, much like a rotation in three dimensions changes from
one coordinate system to another. We don’t want to make this change of basis. In the example
above, the Sy matrix is not diagonal, whereas the Sz matrix is diagonal, because we are using the
Sz basis. It is common practice to use the Sz basis as the default basis, so you can assume that is
the case unless you are told otherwise.

3.4 Hermitian Operators

So far we have defined how operators act upon kets. For example, an operator A acts on a ket |ψ〉
to produce a new ket |φ〉 = A |ψ〉. The operator acts on the ket from the left; if the operator is on
the right of the ket, the result is not defined, which is clear if you try to use matrix representation.
Similarly, an operator acting on a bra must be on the right side of the bra

〈ε| = 〈ψ|A

and the result is another bra.However, the bra 〈ε| = 〈ψ|A is not the bra 〈φ| that corresponds to
the ket |φ〉 = A |ψ〉.Rather than bra 〈φ| is found by defining a new operator A† that obeys

〈φ| = 〈ψ|A†

This new operator A† is called the Hermitian adjoint of the operator A. Hermitian adjoint A†

is found by transposing and complex conjugating the matrix representing A.
This is consistent with the definition of Hermitian adjoint used in matrix algebra.An operator A

is said to be Hermitian if it is equal to its Hermitian adjoint A†.In quantum mechanics, all operators
that correspond to physical observables are Hermitian.The Hermiticity of physical observables is
important in light of two features of Hermitian matrices:

• Hermitian matrices have real eigenvalues, which ensures that results of measurements are
always real.

• The eigenvectors of a Hermitian matrix comprise a complete set of basis states, which ensures
that we can use the eigenvectors of any observable as a valid basis.

3.5 Projection Operators

|+〉 〈+|+ |−〉 〈−| =
(

1
0

)(
1 0

)
+

(
0
1

)(
0 1

)
=

(
1 0
0 0

)
+

(
0 0
0 1

)
=

(
1 0
0 1

) (18)

Now consider the individual operators |+〉 〈+| and |−〉 〈−| . These operators are called projection
operators. In terms of these new operators the completeness relation can also be written as

P+ + P− = 1

14



Quantum Mechanics 3 OPERATORS AND MEASUREMENT

When a projection operator for a particular eigenstate acts on a state |ψ〉, it produces a new ket
that is aligned along the eigenstate and has a magnitude equal to the amplitude (including the
phase) for the state |ψ〉 to be in that eigenstate.

Because the projection operator produces the probability amplitude, we expect that it must be
intimately tied to measurement in quantum mechanics.

The projection postulate is at the heart of quantum measurement. This effect is often referred
to as the collapse (or reduction or projection) of the quantum state vector. The projection
postulate clearly states that quantum measurements cannot be made without disturbing the system
(except in the case where the input state is the same as the output state), in sharp contrast to
classical measurements. The collapse of the quantum state makes quantum mechanics irreversible,
again in contrast to classical mechanics.

Postulate 5

After a measurement of A that yields the result an, the quantum system is in a new
state that is the normalized projection of the original system ket onto the ket (or kets)
corresponding to the result of the measurement:

|ψ
′
〉 =

Pn |ψ〉√
〈ψ|Pn|ψ〉

Figure 10: Schematic diagram of the role of the projection operator in a Stern-Gerlach spin mea-
surement.

We do not really know what is going on in the measurement process, so we cannot explain
the mechanism of the collapse of the quantum state vector. This lack of understanding makes
some people uncomfortable with this aspect of quantum mechanics and has been the source of
much controversy surrounding quantum mechanics. Trying to better understand the measurement
process in quantum mechanics is an ongoing research problem. However, despite our lack of
understanding, the theory for predicting the results of experiments has been proven with very high
accuracy.
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4 Schrödinger Time evolution

In this we marks our final step in developing the mathematical basis of a quantum theory.The key
missing aspect is the ability to predict the future. Physics theories are judged on their predictive
power. Classical mechanics relies on Newton’s second law F = ma to predict the future of a
particle’s motion. The ability to predict the quantum future started with Erwin Schrödinger and
bears his name.

4.1 Schrödinger Equation

The sixth postulate of quantum mechanics says that the time evolution of a quantum system is
governed by the differential equation

i~
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉

where the operator H corresponds to the total energy of the system and is called the Hamiltonian
operator of the system because it is derived from the classical Hamiltonian. This equation is known
as the Schrödinger equation.

Postulate 6

The time evolution of a quantum system is determined by the Hamiltonian or total energy
operator H(t) through the Schrödinger equation

i~
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉

The Hamiltonian is a new operator, but we can use the same ideas we developed to understand
its basic properties. The Hamiltonian H is an observable, so it is a Hermitian operator. The
eigenvalues of the Hamiltonian are the allowed energies of the quantum system, and the eigenstates
of H are the energy eigenstates of the system. If we label the allowed energies as En , then the
energy eigenvalue equation is

H |En〉 = En |En〉

The eigenvectors of the Hamiltonian form a complete basis because the Hamiltonian is an
observable, and therefore a Hermitian operator. Because H is the only operator appearing in the
Schrödinger equation, it would seem reasonable (and will prove invaluable) to consider the energy
eigenstates as the basis of choice for expanding general state vectors:

|ψ(t)〉 =
∑
n

cn(t) |En〉

The basis of eigenvectors of the Hamiltonian is also orthonormal, so

〈Ek|En〉 = δkn

We refer to this basis as the energy basis. For now, we assume that the Hamiltonian is time
independent.Thus if a general state |ψ〉 is to be time dependent, as the Schrödinger equation
implies, then the time dependence must reside in the expansion coefficients cn(t). Substitute
general state into the Schrödinger equation

i~
d

dt

∑
n

cn(t) |En〉 = H
∑
n

cn(t) |En〉

and using eigenvalue equation to obtain

i~
∑
n

dcn(t)

dt
|En〉 =

∑
n

cn(t)En |En〉
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Each side of this equation is a sum over all the energy states of the system. To simplify this
equation, we isolate single terms in these two sums by taking the inner product of the ket on each
side with one particular ket |Ek〉 (this ket can have any label k, but must not have the label n that
is already used in the summation). The orthonormality condition 〈Ek|En〉 = δkn then collapse the
sums:

〈Ek|i~
∑
n

dcn(t)

dt
|En〉 = 〈Ek|

∑
n

cn(t)En|En〉

i~
∑
n

dcn(t)

dt
〈Ek|En〉 =

∑
n

cn(t)En 〈Ek|En〉

i~
∑
n

dcn(t)

dt
δkn =

∑
n

cn(t)Enδkn

i~
dcn(t)

dt
= ck(t)Ek

(19)

We are left with a single differential equation for each of the possible energy states of the systems
k = 1, 2, 3, ... . This first-order differential equation can be rewritten as

dck(t)

dt
= −iEk

~
ck(t).

A solution for this is a complex exponential

ck(t) = ck(0)e−iEkt/~

Here we have denoted the initial condition as ck(0), but we denote it simply as ck hereafter. Each
coefficient in the energy basis expansion of the state obeys the same form of the time dependence
in above equation, but with a different exponent due to the different energies. The time-dependent
solution for the full state vector is summarized by saying that if the initial state of the system at
time t = 0 is

|ψ(0)〉 =
∑
n

cn |En〉

then the time time evolution of this state under the action of the time-independent Hamiltonian
H is

|ψ(t)〉 =
∑
n

cne
−iEnt/~ |En〉

So the time dependence of the original state vector is found by multiplying each energy eigenstate
coefficient by its own phase factor e−iEnt/~ that depends on the energy of that eigenstate. Note
that the factor E/~ is an angular frequency, so that the time dependence is of the form e−iωt,a
form commonly found in many areas of physics. It is important to remember that one must use
the energy eigenstates for the expansion in order to use the simple phase factor multiplication to
account for the Schrödinger time evolution of the state. This key role of the energy basis accounts
for the importance of the Hamiltonian operator and for the common practice of finding the energy
eigenstates to use as the preferred basis.
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5 Postulates

We have introduced all postulates of quantum mechanics. The postulates of quantum mechanics
dictate how to treat a quantum mechanical system mathematically and how to interpret the math-
ematics to learn about the physical system in question. These postulates cannot be proven, but
they have been successfully tested by many experiments, and so we accept them as an accurate way
to describe quantum mechanical systems. New results could force us to reevaluate these postulates
at some later time. All six postulates are listed below to give an idea where we are headed and a
framework into which you can place the new concepts as we confront them.

Postulates of Quantum Mechanics

1. The state of a quantum mechanical system, including all the information you can know about
it, is represented mathematically by a normalized ket |ψ〉.

2. A physical observable is represented mathematically by an operator A that acts on kets.

3. The only possible result of a measurement of an observable is one of the eigenvalues an of
the corresponding operator A.

4. The probability of obtaining the eigenvalue an in a measurement of the observable A on the
system in the state |ψ〉 is

Pan = | 〈an|ψ〉 |2,

where |an〉 is the normalized eigenvector of A corresponding to the eigenvalue an.

5. After a measurement of A that yields the result an, the quantum system is in a new state that
is the normalized projection of the original system ket onto the ket (or kets) corresponding
to the result of the measurement:

|ψ
′
〉 =

Pn |ψ〉√
〈ψ|Pn|ψ〉

6. The time evolution of a quantum system is determined by the Hamiltonian or total energy
operator H(t) through the Schrödinger equation

i~
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉

.
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6 Quantum Spookiness

As we have seen in the previous chapters, many aspects of quantum mechanics run counter to our
physical intuition, which is formed from our experience living in the classical world. The proba-
bilistic nature of quantum mechanics does not agree with the certainty of the classical world—we
have no doubt that the sun will rise tomorrow. Moreover, the disturbance of a quantum mechanical
system through the action of measurement makes us part of the system, rather than an indepen-
dent observer. These issues and others make us wonder what is really going on in the quantum
world. As quantum mechanics was being developed in the early twentieth century, many of the
world’s greatest physicists debated the true meaning of quantum mechanics.

6.1 Einstein-Podolsky-Rosen Paradox

Albert Einstein was never comfortable with quantum mechanics. He is famously quoted as saying
Gott würfelt nicht or God does not play dice, to express his displeasure with the probabilistic nature
of quantum mechanics. But his opposition to quantum mechanics ran deeper than that. He felt that
properties of physical objects have an objective reality independent of their measurement, much
as Erwin felt that his socks were black or white, or long or short, independent of his pulling them
out of the drawer. In quantum mechanics, we cannot say that a particle whose spin is measured
to be up had that property before the measurement. It may well have been in a superposition
state. Moreover, we can only know one spin component of a particle, because measurement of one
component disturbs our knowledge of the other components. Because of these apparent deficiencies,
Einstein believed that quantum mechanics was an incomplete description of reality.

In 1935, Einstein, Boris Podolsky, and Nathan Rosen published a paper presenting a gedanken
experiment designed to expose the shortcomings of quantum mechanics. The EPR Paradox
(Einstein-Podolsky-Rosen) tries to paint quantum mechanics into a corner and expose the absurd
behavior of the theory. The essence of the argument is that if you believe that measurements
on two widely separated particles cannot influence each other, then the quantum mechanics of an
ingeniously prepared two-particle system leads you to conclude that the physical properties of each
particle are really there–they are elements of reality in the authors’ words.

Figure 11: Einstein-Podolsky-Rosogen gedanken experiment.

The experimental situation is depicted in figure.An unstable particle with spin 0 decays into
two spin-1/2 particles, which by conservation of angular momentum must have opposite spin
components and by conservation of linear momentum must travel in opposite directions. For
example, a neutral pi meson decays into an electron and a positron.Observers A and B are on
opposite sides of the decaying particle and each has a Stern-Gerlach apparatus to measure the
spin component of the particle headed in its direction. Whenever one observer measures spin up
along a given direction, then the other observer measures spin down along that same direction.
The quantum state of this two-particle system is

|ψ〉 =
1√
2

(|1〉1 |−〉2 − |−〉1 |+〉2) (20)

As shown in Figure11 observer A measures the spin component of particle 1 and observer B
measures the spin component of particle 2. The probability that observer A measures particle 1 to
be spin up is 50% and the probability for spin down is 50%. The 50-50 split is the same for observer
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B. For a large ensemble of decays, each observer records a random sequence of spin up and spin
down results, with a 50/50 ratio. But, because of the correlation between the spin components of
the two particles, if observer A measures spin up (i.e., S1z = +~/2), then we can predict with 100%
certainty that the result of observer B’s measurement will be spin down (S2z = −~/2). The result
is that even though each observer records a random sequence of ups and downs, the two sets of
results are perfectly anticorrelated. The state ψ in Equation 20 that produces this strange mixture
of random and correlated measurement results is known as an entangled state. The spins of
the two particles are entangled with each other and produce this perfect correlation between the
measurements of observer A and observer B.

Imagine that the two observers are separated by a large distance, with observer B slightly farther
from the decay source than observer A. Once observer A has made the measurement S1z = +~/2,
we know that the measurement by observer B in the next instant will be spin down S2z = −~/2.
We conclude that the state ψ in Equation 20 instantaneously collapses onto the state 0 +91 0 -92 ,
and the measurement by observer A has somehow determined the measurement result of observer
B. Einstein referred to this as spooky action at a distance. The result that observer B records is
still random, it is just that its randomness is perfectly anticorrelated with observer A’s random
result.

The EPR argument contends that because we can predict a measurement result with 100%
certainty (e.g., Sz = −~/2), then that result must be a real property of the particle - it must be
an element of reality. Because the particles are widely separated, this element of reality must be
independent of what observer A does, and hence, must have existed all along. The independence
of the elements of reality of the two particles is called Einstein’s locality principle, and is a
fundamental assumption of the EPR argument.

6.2 Schrödinger Cat Paradox

The Schrödinger cat paradox is an experiment designed by Schrödinger to illustrate some of the
problems of quantum measurement, particularly in the extension of quantum mechanics to classical
systems. The apparatus of Schrödinger’s experiment consists of a radioactive nucleus, a Geiger
counter, a hammer, a bottle of cyanide gas, a cat, and a box, as shown in Figure 12. The nucleus
has a 50% probability of decaying in one hour. The components are assembled such that when the
nucleus decays, it triggers the Geiger counter, which causes the hammer to break the bottle and
release the poisonous gas, killing the cat. Thus, after one hour there is a 50% probability that the
cat is dead.

After the one hour, the nucleus is in an equal superposition of undecayed and decayed states:

|ψnucleus〉 =
1√
2

(|ψundecayed〉+ |ψdecayed〉) (21)

The apparatus is designed such that there is a one-to-one correspondence between the undecayed
nuclear state and the live-cat state and a one-to-one correspondence between the decayed nuclear
state and the dead-cat state. Though the cat is macroscopic, it is made up of microscopic particles
and so should be describable by a quantum state, albeit a complicated one. Thus, we expect that
the quantum state of the cat after one hour is

|ψcat〉 =
1√
2

(|ψalive〉+ |ψdead〉) (22)

Both quantum calculations and classical reasoning would predict 50-50 probabilities of observing
an alive or a dead cat when we open the box. However, quantum mechanics would lead us to
believe that the cat was neither dead nor alive before we opened the box, but rather was in a
superposition of states, and the quantum state collapses to the alive state |ψalive〉 or dead state
|ψdead〉 only when we open the box and make the measurement by observing the cat. But our
classical experiences clearly run counter to this. We would say that the cat really was dead or
alive, we just did not know it yet. (Imagine that the cat is wearing a cyanide sensitive watch—the
time will tell us when the cat was killed, if it is dead!)

The Copenhagen interpretation of quantum mechanics championed by Bohr and Heisen-
berg maintains that there is a boundary between the classical and quantum worlds. We describe
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Figure 12: Schrödinger cat experiment.

microscopic systems (the nucleus) with quantum states and macroscopic systems (the cat, or even
the Geiger counter) with classical rules. The measurement apparatus causes the quantum state to
collapse and to produce the single classical or meter result. The actual mechanism for the collapse
of the wave function is not specified in the Copenhagen interpretation, and where to draw the line
between the classical and the quantum world is not clear. Others have argued that the human
consciousness is responsible for collapsing the wave function, while some have argued that there is
no collapse, just bifurcation into alternate, independent universes. Many of these different points
of view are untestable experimentally and thus raise more metaphysical than physical questions.

These debates about the interpretation of quantum mechanics arise when we use words, which
are based on our classical experiences, to describe the quantum world. The mathematics of quan-
tum mechanics is clear and allows us to calculate precisely. No one is disagreeing about the
probability that the cat will live or die. The disagreement is all about “what it really means!”
To steer us toward the clear mathematics, Richard Feynman admonished us to “Shut up and cal-
culate!” Two physicists who disagree on the words they use to describe a quantum mechanical
experiment generally agree on the mathematical description of the results.

Recent advances in experimental techniques have allowed experiments to probe the boundary
between the classical and quantum worlds and address the quantum measurement issues raised by
the Schrödinger cat paradox. The coupling between the microscopic nucleus and the macroscopic
cat is representative of a quantum measurement whereby a classical meter (the cat) provides a
clear and unambiguous measurement of the state of the quantum system (the nucleus). In this
case, the two possible states of the nucleus (undecayed or decayed) are measured by the two
possible positions on the meter (cat alive or cat dead). The quantum mechanical description of
this complete system is the entangled state

|ψsystem〉 =
1√
2

(|ψundecayed〉 |ψalive〉+ |ψdecayed〉 |ψdead〉) (23)
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7 Cbits and Qubits

7.1 Cbits and their states

A classical computer operates on strings of zeroes and ones, such as 1110011001010, converting
them into other such strings. Each position in such a string is called a bit, and it contains either a
0 or a 1. To represent such collection of bits the computer must contain a corresponding collection
of physical systems, each of which can exist in two unambiguosly distinguishable physical states,
associated with the value(0 or 1) pf he abstract bit that the physical system represents. Such a
physical system could be, for example, a switch that could be open(0) or shut(1), or a magnet
whose magnetization could be oriented in two different directions, up(0) or down(1).

We shall represent the state of each Cbit as a kind of box, depicted by the symbol |〉, into which
we place the value, 0 or 1, represented by that state. Thus the two distinguishable states of a Cbit
are represented by the symbols |0〉 and |1〉.

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
In the case of two Cbits the vector space is four-dimensional, with an orthonormal basis

|00〉 , |01〉 , |10〉 , |11〉 .

7.2 Qubits and their states

In quantum computing, a Qubit or Quantum bit is the basic unit of quantum information - the
quantum version of the classic binary bit.A quantum state is represented as a ray in an abstract
linear vector space known as the Hilbert’s space.The only vectors with any classical meaning in
the whole two-dimensional vector space are the two orthonormal vectors |0〉 and |1〉, since those
are the only two states a Cbit can have.The state |ψ〉 associated with a Qubit can be any unit
vector in the two-dimensional vector space spanned by |0〉 and |1〉 over the complex numbers. The
general state of a Qubit is

|ψ〉 = α |0〉+ β |1〉 =

(
α
β

)
where α and β are two complex numbers constrained only by the requirement that |ψ〉, like |0〉 and
|1〉, should be a unit vector in the complex vector space.The state |ψ〉 is said to be superposition
of the states |0〉 and |1〉 with amplitudes α and β.

Suppose we have two qubits. If these were two classical bits, then there would be four possible
states, 00, 01, 10, and 11. Correspondingly, a two qubit system has four computational basis states
denoted by |00〉 , |01〉 , |10〉 , |11〉 . A pair of qubits can also exist in superpositions of these four
states, so the quantum state of two qubits involves associating a complex coefficient – sometimes
called an amplitude – with each computational basis state, such that the state vector describing
the two qubits is

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉

We can write the computational basis as direct or tensor product of two single qubits as shown:
|00〉 = |0〉 ⊗ |0〉 Each of the two qubits can be measured separately. There are some special two
qubit states which cannot be written as a product of two single qubits known as the Bell states.
An example is:

|00〉+ |11〉√
2

If we measure one of the qubits, the state of the other qubit is determined without performing a
measurement. These are called entangled states.
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7.3 Bloch Sphere representation

Figure 13: Bloch sphere

The Bloch Sphere is a sphere with a radius of one and a point on its surface represents the state
of a qubit. The basis as |0〉 and |1〉 and their linear combinations |ψ〉 = α |0〉+ β |1〉 describe the
state of a single qubit. But because the coefficients α and β are not just real numbers, but can be
imaginary or even complex, visualizing a qubit requires a special tool called the Bloch Sphere. We
also know from quantum mechanics that total probability of the system has to be one. Given this
constraint, we can write |ψ〉 using the following representation:

|ψ〉 = cos θ/2 |0〉+ eiφ sin θ/2

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π.

7.4 Quantum logic gates

In quantum computing and specifically the quantum circuit model of computation, a quantum logic
gate (or simply quantum gate) is a basic quantum circuit operating on a small number of qubits.
They are the building blocks of quantum circuits, like classical logic gates are for conventional
digital circuit. Unlike many classical logic gates, quantum logic gates are reversible. Quantum
gates are unitary operators, and are described as unitary matrices relative to some basis.

7.4.1 Pauli gates(X,Y,Z)

The Pauli gates(X,Y,Z) are the three Pauli matrices (σx, σy, σz) and act on a single qubit. The
Pauli X,Y and Z equate, respectively, to a rotation around the x,y and z axes of the Bloch sphere
by π radians.

The Pauli-X gate is the quantum equivalent of the NOT gate for classical computers with
respect to the standard basis |0〉 , |1〉 which distinguishes the z-axis on the Bloch sphere. It is
sometimes called a bit-flip as it maps |0〉 to |1〉 and |1〉 to |0〉. Similarly, the Pauli-Y maps |0〉 to
i |1〉 and |1〉 to −i |0〉. Pauli Z leaves the basis state |0〉 unchanged and maps |1〉 to |−1〉. Due to
this nature, it is sometimes called phase-flip.

These matrices are usually represented as

X = σx =

[
0 1
1 0

]
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Y = σy =

[
0 −i
i 0

]
Z = σz =

[
1 0
0 −1

]
The Pauli matrices are involutory, meaning that the square of a Pauli matrix is the identity matrix.

I2 = X2 = Y 2 = Z2 = −iXY Z = I

7.4.2 Controlled gates

Controlled gates act on 2 or more qubits, where one or more qubits act as a control for some
operation. For example, the controlled NOT gate (or CNOT or CX) acts on 2 qubits, and performs
the NOT operation on the second qubit only when the first qubit is |1〉, and otherwise leaves it
unchanged. With respect to the basis |00〉 , |01〉 , |10〉 , |11〉 , it is represented by the matrix:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


7.4.3 Hadamard gate

The Hadamard gate acts on a single qubit. It maps the basis state |0〉 to |0〉+|1〉√
2

and |1〉 to |0〉−|1〉√
2

,

which means that a measurement will have equal probabilities to result in 1 or 0. It represents
rotation of π about (x̂+ ẑ)/

√
2 at the Bloch sphere. It is represented by the Hadamard matrix:

H =
1√
2

[
1 1
1 −1

]
7.4.4 Swap gate

The swap gate swaps two qubits. With respect to the basis |00〉 , |01〉 , |10〉 , |11〉 , it is represented
by the matrix:

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


7.4.5 Toffoli(CCNOT) gate

The Toffoli gate, also called CCNOT gate is a 3-bit gate, which is universal for classical computation
but not for quantum computation. The quantum Toffoli gate is the same gate, defined for 3 qubits.
If we limit ourselves to only accepting input qubits that are |0〉 and |1〉, then if the first two bits
are in the state |1〉 it applies a Pauli-X (or NOT) on the third bit, else it does nothing. It is an
example of a controlled gate. Since it is the quantum analog of a classical gate, it is completely
specified by its truth table. It is represented in matrix form as:

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


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7.4.6 Fredkin (CSWAP) gate

The Fredkin gate (also CSWAP), is a 3-bit gate that performs a controlled swap. It is universal
for classical computation. It has the useful property that the numbers of 0s and 1s are conserved
throughout, which in the billiard ball model means the same number of balls are output as input.
It is represented in matrix form as:

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1



Figure 14: Common quantum logic gates by name (including abbreviation), circuit form(s) and
the corresponding unitary matrices.
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7.5 Quantum Circuit

A quantum circuit contains logic gates connected by straight lines, which don’t represent physical
wires but indicates the direction of logic flow with time, earlier time being to the left. Classical
computer circuits consist of wires and logic gates. The wires are used to carry information around
the circuit, while the logic gates perform manipulations of the information, converting it from one
form to another. Quantum Circuits are similar with few important points. Inputs to the circuits
are qubits, as are the outputs. Unlike classical circuits, it do not allow looping. Looping in the
circuit or Fan-inns are not permitted.(Fan-out being a copying circuit is illegal and Fan-in being
it’s inverse is ruled out by reversibility.)

Figure 15: Example of a quantum circuit

7.6 No-cloning theorem

The theorem states that it is impossible to create an exact copy of an unknown quantum state. In
other words, we cannot find an unitary matrix U such that

|ψ〉 ⊗ |s〉 U−→ U (|ψ〉 ⊗ |s〉) = |ψ〉 ⊗ |ψ〉 .

where |ψ〉 is the state to be copied and |s〉 is some input stage of target qubit. It can be shown that
for |ψ〉 to be copied, |ψ〉 must be either |0〉 or |1〉. An arbitrary superposition cannot be copied. It
is impossible to create an independent and identical copy of an arbitrary unknown quantum state.

Alice and Bob have an entangled pair of qubits |β00〉 = |00〉+|11〉√
2

. Now Alice keeps one of the qubit

while Bob takes the other qubit to some place separated physically.

7.7 Teleportation

Teleportation is the technique of sending quantum state from one point in space to another. Let
us assume Alice has a quantum state |ψ〉 = α |0〉 + β |1〉 which she needs to send to Bob. Alice
don’t know the details about the state. The circuit depicting this is:
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The first two lines are the qubits with Alice while the last line is the qubit with Bob. The
starting state is

|ψ0〉 = |ψ〉 |β00〉

Alice now applies a CNOT gate on her qubits to get

|ψ1〉 =
1√
2

[α |0〉 (|00〉+ |11〉) + β |1〉 (|10〉+ |01〉)]

Alice then applies a Hadamard gate on the first qubit to get

|ψ2〉 =
1

2
[|00〉 (α |0〉+ β |1〉) + |01〉 (α |1〉+ β |0〉) + |10〉 (α |0〉 − β |1〉) + |11〉 (α |1〉 − β |0〉)]

Now, Alice measures the two qubits she has. By knowing the outcome of the measurement, Bob
can easily convert the qubit he has to the original qubit to be teleported, by applying X M2 times
and then Z M1 times. In effect, we have transported a qubit using two classical bits of information
which were the measurements done by Alice.

7.8 Entanglement

Recall the two principles of quantum computing:

• A physical system in a definite state can still behave randomly.

• Two systems that are too far apart to influence each other can nevertheless behave in ways
that, though individually random, are somehow strongly correlated.

The core idea behind the second principle is entanglement. Upon reading the principle, one might
be inclined to think that entanglement is simply strong correlation between two entities – but
entanglement goes well beyond mere perfect (classical) correlation. If you and I read the same
paper, we will have learned the same information. If a third person comes along and reads the
same paper, they also will have learned this information. All three people in this case are perfectly
correlated, and they will remain correlated even if they are separated from each other.

Quantum entanglement is a bit more subtle. In the quantum world, you and I could read the
same quantum paper, and yet we will not learn what information is actually contained in the paper
until we get together and share our information. However, when we are together, we find that we
can unlock more information from the paper than we initially thought possible. Thus, quantum
entanglement goes much further than perfect correlation.

Entanglement is a primary feature of quantum mechanics lacking in classical mechan-
ics.
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8 Quantum Algorithms

The first thing thing we’ll need to understand is how to model functions in quantum circuit model.
All quantum operations must be unitary and hence reversible. In general, however, given the
output f(x) of a function, it is not always possible to invert f to obtain the input x. In other words,
we have to compute f(x) in such a way as to guarantee that the computation can be undone. This
is achieved via the following setup:

Here, Uf is a unitary operator mapping |x〉 |y〉 ←− |x|x⊕y〉 for any x,y ∈ {0, 1}.
A suitably programmed quantum computer should act on a number x to produce another

number f(x) for some specified function f. Each integer is represented in the quantum computer
by the corresponding computational-basis state of k Qubits. Some basics:

• State of quantum register : linear combination of states.

• Quantum Parallelism : Computation of a function for each of the states in the input register.

• Oracle : A black box computation analogous to a classical function or subroutine.

• Measurement to extract required result.

8.1 Deutsch’s Algorithm

Let both input and output registers each contain only one Qubit, so we are exploring functions f
that take a single bit into a single bit. There are two rather different ways to think about such
functions.

• Function is constant f(0) = f(1) = 0 or f(0) = f(1) = 1.

• Function is balanced either f(0) = 0, f(1) = 1 or f(0) = 1, f(1) = 0.

The circuit for Duetsch’s algorithm is given as follows:

Figure 16: Quantum circuit for the Duetsch’s algorithm

Divide the computation into 4 stages denoted by the quantum state in that stage: At the start
of the circuit (|ψ1〉), after the first Hadamards are applied (|ψ2〉), after Uf is applied (|ψ3〉), and
after the last Hadamard is applied (|ψ4〉). It is clear that

|ψ1〉 = |0〉 |1〉 ,

|ψ2〉 = |+〉 |−〉 =
1

2
(|0〉 |0〉 − |0〉 |1〉+ |1〉 |0〉 − |1〉 |1〉).
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After the oracle Uf is applied, we have state

|ψ3〉 =
1

2
(|0〉 |f(0)〉 − |0〉 |1⊕ f(0)〉+ |1〉 |f(1)〉 − |1〉 |1⊕ f(1)〉).

Before we apply the final Hadamard, it will be easier to break our analysis down into two cases:
When f is constant and when f is balanced.

Case 1: Constant function. By definition, if f is constant, then f(0) = f(1). Therefore, we can
simplify |ψ3〉 to

|ψ3〉 =
1

2
(|0〉 |f(0)〉 − |0〉 |1⊕ f(0)〉+ |1〉 |f(0)〉 − |1〉 |1⊕ f(0)〉)

=
1

2
((|0〉+ |1〉)⊗ |f(0)〉 − (|0〉+ |1〉)⊗ |1⊕ f(0)〉)

=
1

2
(|0〉+ |1〉)⊗ (|f(0)〉 − |1⊕ f(0)〉)

=
1√
2
|+〉 ⊗ (|f(0)〉 − |1⊕ f(0)〉).

Thus, qubit 1 is now in state |+〉. We conclude that

|ψ4〉 =
1√
2
|0〉 ⊗ (|f(0)〉 − |1⊕ f(0)〉)

i.e, qubit 1 is exactly in state |0〉 . Thus, measuring qubit 1 in the standard basis now yields outcome
0 with certainty.

Case 2: Balanced function. By definition, if f is balanced, then f(0) 6= f(1). Since f is a binary
function, this means f(0) ⊗ 1 = f(1) and equivalently f(1) ⊗ 1 = f(0). Therefore, we can simplify
|ψ3〉 to

|ψ3〉 =
1

2
(|0〉 |f(0)〉 − |0〉 |f(1)〉+ |1〉 |f(1)〉 − |1〉 |f(0)〉)

=
1

2
((|0〉 − |1〉)⊗ |f(0)〉 − (|0〉 − |1〉)⊗ |f(1)〉)

=
1

2
(|0〉 − |1〉)⊗ (|f(0)〉 − |f(1)〉)

=
1√
2
|−〉 ⊗ (|f(0)〉 − |f(1)〉).

Thus, qubit 1 is now in state |−〉. We conclude that

|ψ4〉 =
1√
2
|1〉 ⊗ (|f(0)〉 − |f(1)〉)

i.e, qubit 1 is exactly in state |1〉. Thus, measuring qubit 1 in the standard basis now yields
outcome 1 with certainty.

Conclusion. If f is constant, the algorithm outputs 0, and if f is balanced, the algorithm outputs
1. Thus, the algorithm decides whether f is constant or balanced, using just a single query!

8.2 The phase kickback trick

We’ve analyzed Deutsch’s algorithm using a brute force calculation, but there’s a more intuitive
view which will be used repeatedly in later algorithms, and which simplifies our calculation here
greatly. This view is in terms of the phase kickback trick, which Deutsch’s algorithm uses. To
explain the trick, consider for any x ∈ {0, 1} what happens if we run Uf on input |x〉 |−〉 :

|ψ〉 = Uf |x〉 |−〉 =
1√
2

(Uf |x〉 |0〉 − Uf |x〉 |1〉) =
1√
2

(|x〉 |f(x)〉 − |x〉 |1⊕ f(x)〉)

= |x〉 ⊗ 1√
2

(|f(x)〉 − |1⊕ f(x)〉)
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Now, there are two possibilities: Either f(x) = 0, or f(x) = 1. If f(x) = 0, the equation above
simplifies to

|ψ〉 = |x〉 ⊗ 1√
2

(|0〉 − |1〉) = |x〉 |−〉 ,

i.e. the input state is unchanged by the action of Uf . If, on the other hand, f(x) = 1, we instead
have

|ψ〉 = |x〉 ⊗ 1√
2

(|1〉 − |0〉) = − |x〉 |−〉 ,

i.e. a 1 phase factor is produced. We can summarize both these cases in a single equation:

Uf |x〉 |−〉 = (−1)f(x) |x〉 |−〉 .

8.3 The Deutsch-Josza algorithm

Deutsch’s algorithm works in the simple case where f acts on a singe input qubit. Developing the
n-bit generalization of Deutsch’s algorithm, known as the Deutsch-Josza algorithm. Specifically,
imagine now we have an n-bit function f : {0, 1}n −→ {0, 1} which is promised to be constant or
balanced, and we wish to determine which is the case. Here, constant means f(x) is the same for
all x ∈ {0, 1}, and balanced means f(x) = 0 for precisely half the x ∈ {0, 1}n and f(x) = 1 for the
remaining inputs.

Figure 17: Quantum circuit for the Deutsch-Josza algorithm.

In this more general setting, note that we define the oracle Uf implementing f analogously to
before: Uf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 , where now x is an n-bit string. As before, each wire denotes a
single qubit. The first n qubits are initialized to |0〉; these are the input qubits. The final, i.e. (n
+ 1)st, qubit is initialized to |1〉 . Observe that the algorithm is the straightforward generalization
of Deutsch’s algorithm to the setting of n input qubits. We claim that using a single query to Uf
, the Deutsch-Josza algorithm can determine if f is constant or balanced. Let us now see why this
is so.

As before, we divide the computation into 4 stages denoted by the quantum state in that stage:
At the start of the circuit (|ψ1〉), after the first Hadamards are applied (|ψ2〉), after Uf is applied
(|ψ3〉), and after the last Hadamard is applied (|ψ4〉). It is clear that

|ψ1〉 = |0〉 . . . |0〉 |1〉 = |0〉⊗n |1〉
|ψ2〉 = |+〉 . . . |+〉 |−〉 = |+〉⊗n |1〉

Since we have defined the action of Uf in terms of the standard basis, i.e. Uf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 ,
in order to understand how Uf applies to |ψ2〉, we first need to rewrite |+〉⊗n in terms of the
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standard basis. For this, note that

|+〉⊗n =
1√
2n

(|0〉+ |1〉)⊗ · · · ⊗ (|0〉+ |1〉) =
1

2n/2

∑
x∈{0,1}n

|x〉 ,

where the last equality holds since expanding the tensor products out yields 2n terms in the sum,
each of which corresponds to a unique string x ∈ {0, 1}n.

8.4 Grover’s algorithm

Quantum computer has over a classical computer is its superior speed searching databases. Grover’s
algorithm demonstrates this capability. This algorithm can speed up an unstructured search prob-
lem quadratically, but its uses extend beyond that; it can serve as a general trick or subroutine
to obtain quadratic run time improvements for a variety of other algorithms. This is called the
amplitude amplification trick.
Unstructured search
Suppose you are given a large list of N items. Among these items is one item with a unique
property that we wish to locate. We will call this one the winner,w. Think of each item in the list
as a box of a particular color. Say all items in the list are gray except the winner w, which is red.

To find the red box – the marked item – using classical computation, one would have to check
on average N/2 of these boxes, and in the worst case, all N of them. On a quantum computer,
however, we can find the marked item in roughly

√
N steps with Grover’s amplitude amplification

trick. A quadratic speedup is indeed a substantial time-saver for finding marked items in long lists.
Additionally, the algorithm does not use the list’s internal structure, which makes it generic; this
is why it immediately provides a quadratic quantum speed-up for many classical problems.
The Oracle
How will the list items be provided to the quantum computer? For the examples in this topic, our
‘database’ is comprised of all the possible computational basis states our qubits can be in. For
example, if we have 3 qubits, our list is the states |000〉 , |000〉 , . . . |111〉 (i.e the states |0〉 −→ |7〉).

Grover’s algorithm solves oracles that add a negative phase to the solution states. That is, for
any state |x〉 in the computational basis:

Uw |x〉 =

{
|x〉 if x 6= w

− |x〉 if x = w

This oracle will be a diagonal matrix, where the entry that correspond to the marked item will
have a negative phase. For example, if we have three qubits and w = 101, our oracle will have the
matrix:

Uw =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 -1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


What makes Grover’s algorithm so powerful is how easy it is to convert a problem to an oracle

of this form. There are many computational problems in which it’s difficult to find a solution, but
relatively easy to verify a solution. For these problems, we can create a function f that takes a
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proposed solution x and returns f(x) = 0 if x is not a solution (x 6= w), and f(x) = 1 for a valid
solution (x = w). Our oracle can then be described as:

Uw |x〉 = (−1)f(x) |x〉

and the oracle’s matrix will be a diagonal matrix of the form:

Uw =


(−1)f(0) 0 . . . 0

0 (−1)f(1) . . . 0
... 0

. . .
...

0 0 . . . (−1)f(2
n−1)


Amplitude amplification
So how does the algorithm work? Before looking at the list of items, we have no idea where the
marked item is. Therefore, any guess of its location is as good as any other, which can be expressed
in terms of a quantum state called a uniform superposition:

|s〉 =
1√
N

∑
x

|x〉

If at this point we were to measure in the standard basis |x〉, this superposition would collapse
to any one of the basis states with the same probability of 1

N = 1
2n . Our chances of guessing the

right value is therefore 1 in 2n, as could be expected. Hence, on average we would need to try
about N = 2n times to guess the correct item. Enter the amplitude amplification procedure, which
is how a quantum computer significantly enhances this probability. This procedure stretches out
(amplifies) the amplitude of the marked item, which shrinks the other items’ amplitudes, so that
measuring the final state will return the right item with near certainty.

This algorithm has a nice geometrical interpretation in terms of two reflections, which generate
a rotation in a two-dimensional plane. The only two special states we need to consider are the
winner |w〉 and the uniform superposition |s〉. These two vectors span a two-dimensional plane in
the vector space. They are not quite perpendicular because |w〉 occurs in the superposition with
amplitude N−1/2 as well. We can, however, introduce an additional state |s′〉 that is in the span of
these two vectors, is perpendicular to |w〉, and is obtained from |s〉 by removing |w〉 and rescaling.

Step 1The amplitude amplification procedure starts out in the uniform superposition |s〉. (The
uniform superposition is easily constructed from |s〉 = H⊗n |0〉n).

The left graphic corresponds to the two-dimensional plane spanned by perpendicular vectors
|w〉 and |s′〉, which allows us to express the initial state as |s〉 = sinθ |w〉 + cosθ |s′〉, where
θ = arcsin 〈s|w〉 = arcsin 1√

N
. The right graphic is a bar graph of the amplitudes of the state |s〉.
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Step2 We apply the oracle reflection Uf to the state |s〉.

Geometrically this corresponds to a reflection of the state |s〉 about |s′〉. This transformation
means that the amplitude in front of the state becomes negative, which in turn means that the
average amplitude (indicated by a dashed line) has been lowered.

Step3 We now apply an additional reflection Us about the state |s〉 : Us = 2 |s〉 〈s| − 1. This
transformation maps the state to UsUf |s〉 and completes the transformation.

Two reflections always correspond to a rotation. The transformation UsUf rotates the initial
state |s〉 closer toward the winner |w〉. The action of the reflection Us in the amplitude bar diagram
can be understood as a reflection about the average amplitude. Since the average amplitude has
been lowered by the first reflection, this transformation boosts the negative amplitude of |w〉 to
roughly three times its original value, while it decreases the other amplitudes. We then go to
Step 2 to repeat the application. This procedure will be repeated several times to focus in on the
winner.

After steps, the state will have transformed to |ψt〉, where |ψt〉 = (UsUf )t |s〉. How many times

do we need to apply the rotation? It turns out that roughly
√
N rotations suffice. This becomes

clear when looking at the amplitudes of the state . We can see that the amplitude of |w〉 grows
linearly with the number of applications ≈ tN−1/2. However, since we are dealing with amplitudes
and not probabilities, the vector space’s dimension enters as a square root. Therefore it is the
amplitude, and not just the probability, that is being amplified in this procedure.

In the case that there are multiple solutions,M, it can be shown that roughly
√

N
M rotations

will suffice.
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