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1 Introduction

Physicists often only deal with ‘ideal’ systems that are as sim-
ple and ‘pure’ as possible, but soft matter has shown that
even ‘untidy’ physical systems like biological materials and
colloidal solutions can be successfully described in general
terms.! The softness of soft-matter implies that it is easily

driven far from equilibrium, making them the perfect place to
study velocity fluctuations and turbulence,” which is probably
the last unsolved problem in Newtonian physics.
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Figure 1. Stationary turbulent flow over a step (in black)*

In the continuum limit (small mean free path), Newton’s
second law for a fluid with an unknown velocity vector v and
pressure p(x, t), can be written as

G 0T = VA f@n) )

where v > 0 is kinematic viscosity and f(z,t) represents
external volumetric forces. For an incompressible fluid

V=0 2

(1) and (2) combined are called the Navier-Stokes equations.

Even though these basic equations of macroscopic classi-
cal physics have been well-known for centuries, the simplest
solutions (corresponding to f(x,t) = 0) for these are still un-
known due to the non-linearity of the equations (some spe-
cific solutions are known, however, it is yet to be proven that
given any arbitrary initial velocity, solutions exist for arbi-
trarily large time scale). How can we deeply understand the
general solution (which explains turbulent flows), if we don’t
even know that the fluid equations have solutions?> This made
Clay Mathematical Institute declare Navier-Stokes existence
(or non-existence) and smoothness as one of the seven Mil-
lennium prize problems.®

This essay, therefore, deals with two problems: solutions
to Navier-Stokes equations (which is more mathematical than

physical) and turbulence. We will try to motivate that soft mat-
ter physics can provide valuable insights into what these solu-
tions should look like (and how one should go about looking
for them) and their interpretation, so that we can construct a
theoretical model for the statistics of turbulent flows.

2 Current understanding of turbulence and
solutions to Navier-Stokes equation

Turbulence is a ubiquitous phenomenon in nature, from mix-
ing of cream in a coffee cup to the formation of galaxies. It is
characterized by the chaotic changes in the pressure and flow
velocity in fluids which are present in almost all flows, natural
or man-made.” Advances in key issues such as energy gen-
eration, pollution mitigation, and climate change, as well as
progress in several fields of fundamental science from astro-
physics to geophysics, are limited by the lack of understanding
of the physics of turbulence.® However, to this date, there is
no consensus on what should constitute as a solution to the
turbulence problem. From an engineering perspective, we are
interested in mean properties of these “random” flows, while
from the physics point of view, it is crucial to understand the
nonlinear physical processes responsible for those mean prop-
erties as well as the details of motions across the broad range
of excited scales.’

There are four basic reasons that make turbulence a hard
concept to understand: Randomness, Eddy viscosity, cascade
and scaling.*

Randomness: According to the classical interpretation,
turbulent flows appear random because intrinsic instabilities of
the flow amplify the thermal/mechanical fluctuations. Despite
a lot of improvement in our understanding of such chaotic be-
haviour in dynamical systems, we still don’t understand high
Reynolds number flows which have large attractors.
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Figure 2. (a) A highly ordered flow and (b) active turbulence.
Lower panels show the enstrophy signal along the channel'®

Eddy viscosity: Taking analogy from molecular motion,
the dynamics on hydrodynamic scale become diffusive when
the motion are on widely separated scales (this is, for example,
the reason why a drop of dye diffuses at rates much higher than
its molecular rates), however, in turbulent flows, dominant in-
teractions are usually contiguous making viscosity models not
perfectly correct models to describe them.



Cascading: Large eddies which are unstable are formed
due to the forces driving the flow. These eddies are unstable
and form smaller eddies, which themselves become unstable
and the process continues until molecular viscosity can sup-
press further cascading. Such cascading effects make it hard to
understand the dynamics of a particular eddy.

Scaling: At both very large and small length scales (com-
pared to Kolmogorov dissipation scale, Iy = (Vmor/E )1/ 4
where £ is the energy flux), scale invariance breaks down, mak-
ing it hard to understand turbulence at these length scales.

3 Implications from computational soft matter

Our usual statistical mechanics approaches only give equilib-
rium results, while the purpose of hydrodynamic equations is
to deal with situations where equilibrium is only attained lo-
cally. Hence the nonlinear coupling mechanisms for response
and dynamical behavior of flowing soft matter, force us to re-
sort to coarse-grained descriptions that express a large number
of degrees of freedom through a much smaller number of ef-
fective degrees of freedom whilst retaining the correct overall
physical behaviour.!! These computational methods then pro-
vide a way to model the stochastic nature of turbulence and
compare it with actual observations. This power of computa-
tional soft condensed matter was recognised as early as 1946,
when John von Neumann remarked, “computational fluid dy-
namics would make experimental fluid dynamics obsolete”!?

Specialised simulation methods (mesoscopic modelling)
which include only the essential details of interactions by say
collective collision satisfying local conservation or hydrody-
namics on a lattice, have to reproduce Navier-Stokes hydro-
dynamics asymptotically. Hence, approaches like Brownian
dynamics, O(N?3) and Chebyshev polynomial approximation,
O(N?2-5) have helped us to understand the constitutive relations
between the transport properties and implementation of bound-
ary conditions on the real system on a macroscopic level.'?
Some commonly used mesoscopic modelling methods are: dis-
sipative particle dynamics (DPD), multi-particle collision dy-
namics (MPC), lattice Boltzmann method (LBZ) and high-
performance computing.

In the following examples I outline the potential of these
techniques to understand turbulence and solutions to Navier-
Stokes equations: DPD has been used to model different dy-
namic regimes of polymer chains undergoing hydrodynamic
interactions at small length scale and repetitional dynamics
at long lengths where chains are entangled and feel topolog-
ical constraints.'* MPC: Non-equilibrium flows of microflu-
idic droplets in a Hele-Shaw geometry can be modelled within
2D-MPC confirming validity of far-field approximation of hy-
drodynamic interactions at high density and longitudinal mo-
tion induced by boundary conditions on flow field confirming
the ability of MPC to investigate non-equilibrium physics and
develop novel methods in statistical physics.!> LBM has a
plethora of boundary conditions, like the bounce-back bound-
ary condition which has no conventional counterpart in Navier-
Stokes hinting towards improving/correcting the Navier-Stokes
equation for our understanding of turbulence.'®!®  Attempts
have also been made to understand Brownian motion and ther-

mal fluctuations using LBM?°
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Figure 3. Turbulence: Experimental(top) and MPC(bottom)?>!

4 Beyond Navier-Stokes equations

Navier-Stokes equations are only valid in the continuum limit,
that is, when the gradients of velocity, temperature and density
are sufficiently small so that we are not very far away from the
equilibrium. There are many simple experiments?> (known as
far back as the 1880s) which couldn’t be explained by Navier-
Stokes equations. Hence one can wonder if models that are
valid despite such highly non-equilibrium fluxes might be able
to shed any light on the nature of turbulence.

Soft matter systems like complex fluids and plasma have
known to exhibit turbulence whose dynamics are described by
more complex equations than Navier-Stokes flows. These sys-
tems might be a gateway to the ‘beyond Navier-Stokes’ hy-
drodynamics and understanding turbulence. One such system
of quickly growing scientific interests is turbulence in Active
fluids, an active system consisting of self-propelled particles
with mesoscale turbulent motion. Such self-sustained “active
turbulence” can have profound effects on nutrient mixing and
molecular transport in microbiological systems.>> Due to the
internal microscopic forcing, active systems have turbulence
at small Reynolds number as opposed to very large Reynolds
number of ordinary turbulent fluids.>* It has been shown that
due to internal instabilities, in addition to the convective non-
linearities of Navier-Stokes type, higher-order non-linearities
are also present in active fluids, providing additional freedom
for the system to ‘self-tune’ into a critical state.2> This if true,
will imply that turbulence can indeed have non-universal be-
haviour. Numerous computational models based on active mat-
ter have been proposed, some of which are successful in de-
scribing the underlying out-of equilibrium character, multiscale
nature, nonlinearity, and multibody interactions.2®

5 Conclusions

In this article, I have pointed out the importance and difficul-
ties in finding solutions to Navier-Stokes equations and how an
understanding of turbulence can require beyond Navier-Stokes
hydrodynamics. We saw that computational soft matter physics
and modelling has provided many new insights into both turbu-
lence and beyond Navier-Stokes physics due to the wide range
of tunable parameters, making predictions which are very close
to experimental results. With an increased interest in topics
like active matter, we can hopefully understand the ever elud-
ing problem of turbulence in the next couple of decades. It
is, however, unclear whether soft matter physics can be used
to solve the Millennium problem, because they work in either
small-time ([0, T") instead of [0, c0)) or small-velocity limit.
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